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Adaptive Computational Chemotaxis in Bacterial
Foraging Optimization: An Analysis

Sambarta Dasgupta, Swagatam Das, Ajith Abraham, Senior Member, IEEE, and Arijit Biswas

Abstract— In his seminal paper published in 2002, Passino
pointed out how individual and groups of bacteria forage for
nutrients and how to model it as a distributed optimization
process, which he called the bacterial foraging optimization
algorithm (BFOA). One of the major driving forces of BFOA
is the chemotactic movement of a virtual bacterium that models
a trial solution of the optimization problem. This paper presents a
mathematical analysis of the chemotactic step in BFOA from the
viewpoint of the classical gradient descent search. The analysis
points out that the chemotaxis employed by classical BFOA
usually results in sustained oscillation, especially on flat fitness
landscapes, when a bacterium cell is close to the optima. To
accelerate the convergence speed of the group of bacteria near the
global optima, two simple schemes for adapting the chemotactic
step height have been proposed. Computer simulations over sev-
eral numerical benchmarks indicate that BFOA with the adaptive
chemotactic operators shows better convergence behavior, as
compared to the classical BFOA. The paper finally investigates
an interesting application of the proposed adaptive variants
of BFOA to the frequency-modulated sound wave synthesis
problem, appearing in the field of communication engineering.

Index Terms— Bacterial foraging, biological systems, computa-
tional chemotaxis, global optimization, gradient descent search,
swarm intelligence.

I. INTRODUCTION

TO TACKLE complex search problems of the real world,
scientists have been drawing inspiration from nature and

natural creatures for years. Optimization is at the heart of many
natural processes like Darwinian evolution, group behavior of
social insects, and the foraging strategy of other microbial
creatures. Natural selection tends to eliminate species with
poor foraging strategies and favor the propagation of genes
of species with successful foraging behavior since they are
more likely to enjoy reproductive success.

Since a foraging organism or animal takes necessary action
to maximize the energy intake per unit time spent for foraging,
considering all the constraints presented by its own physiology
such as sensing and cognitive capabilities, environment (e.g.,
density of prey, risks from predators, physical characteristics
of the search space), the natural foraging strategy can lead to
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optimization and essentially this idea can be applied to solve
real-world optimization problems [1]. Based on this concept,
Passino proposed an optimization technique known as the
bacterial foraging optimization algorithm (BFOA) [1], [2]. To
date, BFOA has successfully been applied to real-world prob-
lems such as optimal controller design [1], [3], harmonic esti-
mation [4], transmission loss reduction [5], active power filter
synthesis [6], and learning of artificial neural networks [7].

One major step in BFOA is the simulated chemotactic
movement. Chemotaxis is a foraging strategy that implements
a type of local optimization, where the bacteria try to climb
up the nutrient concentration to avoid noxious substance and
search for ways out of neutral media. This step has much
resemblance with a biased random walk model [8].

This paper provides a mathematical analysis of the sim-
ulated chemotaxis in the light of the classical gradient de-
scent search [9], [10] algorithm. The analysis reveals that
a chemotactic step height varying as the function of the
current fitness value can lead to better convergence behavior
as compared to a fixed step height. The adaptation schemes,
proposed for automatically adjusting the step height, are
simple and impose no additional computational burden on
the BFOA in terms of excess number of function evaluations
(FEs). At this point, we would like to mention that several
researchers have investigated the adaptation of step size in
both stochastic and deterministic gradient descent optimization
algorithms [11]–[16] mostly in the context of training neural
networks. However, unlike the works cited in [11]–[16], the
adaptation schemes proposed in this paper for the chemotactic
step height are not based on complex calculus techniques,
does not require computationally intensive operations such as
Hessian matrix evaluation [17], [18], and is general enough
for widespread use with BFOA as a black-box optimization
technique. They are solely based on the fitness information
of each individual member of the bacterial population and
accelerate the convergence of the bacterium to an optimum,
avoiding any oscillatory behavior around the optimum.

The proposed adaptive BFOA (ABFOA) schemes have been
compared with their classical counterpart, a very popular
swarm-intelligence algorithm known as the particle swarm
optimization (PSO) [19] and a standard real-coded genetic
algorithm (GA) [20], [21] over a test suite of ten numerical
benchmarks with respect to the following performance mea-
sures: solution quality, convergence speed, and the frequency
of hitting the optimal solution. This paper also investigates
an interesting application of the ABFOA schemes to the
parameter estimation of frequency-modulated sound waves.
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The rest of the paper is organized as follows. In Section II,
we outline the classical BFOA in sufficient details. Sec-
tion III reviews the state-of-the-art research works on BFOA.
Section IV provides a mathematical analysis of the chemo-
tactic movement of a simple 1-D bacterium and proposes
the adaptive chemotactic operators for BFOA. Section V
provides detailed comparison between the classical BFOA
and its adaptive variants over a test suite of 10 well-known
numerical benchmarks. Section VI describes an application
of the adaptive BFOAs to the parameter estimation problem
for frequency-modulated sound wave. Finally, conclusions
are drawn in section VII. Analysis of the chemotaxis for a
multibacterial system has been presented in Appendix I. It has
also been shown that under certain conditions the mathematical
model of the multibacterial system boils down to that of a
single bacterium.

II. CLASSICAL BFOA ALGORITHM

The bacterial foraging system consists of four principal
mechanisms, namely chemotaxis, swarming, reproduction, and
elimination dispersal [1]. Below we briefly describe each
of these processes and finally provide a pseudo-code of the
complete algorithm.

A. Chemotaxis

This process simulates the movement of an E.coli cell
through swimming and tumbling via flagella. Biologically, an
E.coli bacterium can move in two different ways. It can swim
for a period of time in the same direction, or it may tumble,
and alternate between these two modes of operation for the
entire lifetime. Suppose θ i ( j, k, l) represents i th bacterium at
j th chemotactic, kth reproductive and lth elimination dispersal
step. C(i) is the size of the step taken in the random direction
specified by the tumble (run length unit). Then in compu-
tational chemotaxis the movement of the bacterium may be
represented by

θ i ( j + 1, k, l) = θ i ( j, k, l)+ C(i)
�(i)√

�T (i)�(i)
(1)

where � indicates a vector in the random direction whose
elements lie in [–1, 1].

B. Swarming

An interesting group behavior has been observed for several
motile species of bacteria including E.coli and S. typhimurium,
where intricate and stable spatiotemporal patterns (swarms)
are formed in a semisolid nutrient medium [22], [23]. A
group of E.coli cells arrange themselves in a traveling ring
by moving up the nutrient gradient when placed amidst a
semisolid matrix with a single nutrient chemoeffecter. The
cells, when stimulated by a high level of succinate, release an
attractant aspertate, which helps them to aggregate into groups
and thus move as concentric patterns of swarms with high
bacterial density. The cell-to-cell signaling in E. coli swarm

may be represented by the following function:

Jcc(θ, P( j, k, l)) =
S∑

i=1

Jcc(θ, θ
i ( j, k, l))

=
S∑

i=1

[−dattractant exp(−wattractant

p∑
m=1

(θm − θ i
m)

2)]

+
S∑

i=1

[hrepellant exp(−wrepellant

p∑
m=1

(θm − θ i
m)

2)] (2)

where Jcc(θ, P( j, k, l)) is the objective function value to
be added to the actual objective function (to be mini-
mized) to present a time-varying objective function, S is
the total number of bacteria, p is the number of variables
to be optimized that are present in each bacterium, and
θ = [θ1,θ2,...,θp]T is a point in the p-dimensional search do-
main. daatractant , wattractant , hrepellant , wrepellant are different
coefficients that should be chosen properly.

C. Reproduction

The least healthy bacteria eventually die while each of the
healthier bacteria (those yielding lower value of the objective
function) asexually split into two bacteria, which are then
placed in the same location. This keeps the swarm size
constant.

D. Elimination and Dispersal

Gradual or sudden changes in the local environment where
a bacterium population lives may occur due to various reasons:
e.g., a significant local rise of temperature may kill a group of
bacteria that are currently in a region with a high concentration
of nutrient gradients. Events can take place in such a fashion
that all the bacteria in a region are killed or a group is
dispersed into a new location. To simulate this phenomenon
in BFOA, some bacteria are liquidated at random with a very
small probability while the new replacements are randomly
initialized over the search space.

The detailed pseudo-code and a flowchart (Fig. 1) of the
complete algorithm is given below:

The BFOA Algorithm

Step 1. Initialize parameters p, S, Nc, Ns, Nre, Ned , Ped ,
C(i)(I = 1, 2, . . ., S), θ i

where
p: dimension of the search space,
S: total number of bacteria in the population,
Nc: number of chemotactic steps,
Ns : swimming length,
Nre: the number of reproduction steps,
Ned : the number of elimination–dispersal events,
Ped : elimination-dispersal probability, and
C(i): the size of the step taken in the random
direction specified by the tumble.

Step 2. Elimination–dispersal loop: l = l + 1.
Step 3. Reproduction loop: k = k + 1.
Step 4. Chemotaxis loop: j = j + 1.
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Start

Initialize all variables. Set all
loop-counters and bacterium

index i equal to 0.

Increase eliminaiton –
dispersion loop counter

l = l + 1

Increase Reproduction loop
counter k = k + 1

Perform Elimination-
dispersal

(For i = 1, 2... S, with
probability Ped ,

eliminate and disperse
one to a random

location)

Increase Chemotactic loop
counter
j = j + 1

Perform Reproduction
(by killing the worse
half of the population

with higher cumulative
health and splitting the

better half into two)

Stop No

No

No

Yes

Yes

Yes

X

Y

l < Ned?

k < Nrd?

j < Nc?

(a)

Y

Set bacterium index i = i + 1

Tumble (let the i-th bacterium take a step of
height C(i) along tumble vector Δ(i))

Swim (let the i-th bacterium take a
step of height C(i) along the direction

of the same tumble vector Δ(i))

Compute J (i,j,k,l), adding the cell to cell
attractant effect to nutrient concentration and set

Jlast = J (i,j-1,k,l)

J (i, j, k, l),< Jlast?

Compute  J(i,j+1,k,l), with the cell-to-cell
attractant effect

Set swim counter
m = 0.

m = m + 1.

No

No

No

Yes

Yes

Yes

m < Ns?

Set
m = Ns

i < S ?X

(b)

Fig. 1. Flowchart of the bacterial foraging algorithm.

(a) For i = 1, 2, . . ., S, take a chemotactic step for
bacterium i as follows.

(b) Compute fitness function J (i, j, k, l).
Let, J (i, j, k, l) = J (i, j, k, l)+ Jcc(θ

i ( j, k, l),
P( j, k, l)) (i.e., add on the cell-to cell
attractant–repellant profile to simulate the
swarming behavior) where Jcc is defined in (2).

(c) Let Jlast = J (i, j, k, l) to save this value since
we may find a better cost via a run.

(d) Tumble: generate a random vector �(i) ∈ �p

with each element �m(i),m = 1, 2, . . . , p, a
random number on [–1, 1].

(e) Move: Let

θ i ( j +1, k, l) = θ i ( j, k, l)+C(i)
�(i)√

�T (i)�(i)

this results in a step of size C(i) in the direction
of the tumble for bacterium i.

(f) Compute J (i, j + 1, k, l), and let J (i, j +
1, k, l) = J (i, j, k, l)+Jcc(θ

i ( j+1, k, l), P( j+
1, k, l)).

(g) Swim.

i) Let m = 0 (counter for swim length);
ii) While m < Ns (if have not climbed down

too long);
iii) Let m = m + 1;
iv) If J (i, j + 1, k, l) < Jlast (if doing better),

let Jlast = J (i, j + 1, k, l) and let

θ i ( j + 1, k, l) = θ i ( j, k, l)

+ C(i)
�(i)√

�T (i)�(i)

And use this θ i ( j + 1, j, k) to compute the
new J (i, j + 1, k, l) as we did in (f);

v) Else, let m = Ns . This is the end of the
while statement.

(h) Go to next bacterium (I + 1) if i �= S [i.e., go
to (b) to process the next bacterium].

Step 5. If j < Nc, go to Step 4. In this case, continue
chemotaxis since the life of the bacteria is not
over.
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Step 6. Reproduction:
(a) For the given k and l, and for each i =

1, 2, . . . , S, let

J i
health =

Nc+1∑
j=1

J (i, j, k, l) (3)

be the health of the bacterium i (a measure
of how many nutrients it got over its lifetime
and how successful it was at avoiding noxious
substances). Sort bacteria and chemotactic pa-
rameters C(i) in order of ascending cost Jhealth
(higher cost means lower health).

(b) The Sr bacteria with the highest Jhealth values
die and the remaining Sr bacteria with the
best values split (this process is performed by
placing the copies that are made at the same
location as their parent).

Step 7. If k < Nre, go to Step 3. In this case, we have not
reached the number of specified reproduction steps,
so we start the next generation of the chemotactic
loop.

Step 8. Elimination–dispersal: For i = 1, 2 . . . , S with prob-
ability Ped , eliminate and disperse each bacterium
(this keeps the number of bacteria in the population
constant). To do this, if a bacterium is eliminated,
simply disperse another one to a random location on
the optimization domain. If l < Ned , then go to Step
2; otherwise end.

III. RELATED WORKS ON BFOA

Since its advent in 2002, BFOA has attracted researchers
from diverse domains of knowledge. This has resulted in a few
variants of the classical algorithm as well as many interesting
applications of the same to the real-world optimization prob-
lems. In 2002, Liu and Passino [2] incorporated a new function
Jar (θ) in BFOA to represent the environment-dependent cell-
to-cell signaling, such that

Jar (θ) = exp(M − J (θ)).Jcc(θ) (4)

where M is a tunable parameter and Jcc(θ) is given by (2). For
swarming, they considered the minimization of J (i, j, k, l)+
Jar (θ

i ).
Tang et al. [24] proposed a bacterial foraging behavior

in varying environments. Their study focused on the use of
an individual-based modeling (IbM) method to simulate the
activities of bacteria and the evolution of bacterial colonies.
They derived a bacterial chemotaxis algorithm in the same
framework and showed through simulation studies that the
proposed algorithm could reflect the bacterial behaviors and
population evolution in varying environments. Li et al. pro-
posed a modified bacterial foraging algorithm with varying
population (BFAVP) [25] and applied the same to the optimal
power flow (OPF) problems. Instead of simply describing
chemotactic behavior into BFOA, as was done by Passino
[1], BFAVP also incorporates the mechanisms of bacterial
proliferation and quorum sensing, which allow a varying
population in each generation of bacterial foraging process.

Tripathy and Mishra proposed an improved BFO algorithm
for simultaneous optimization of the real power losses and
voltage stability limit (VSL) of a mesh power network [26].
In their modified algorithm, first, instead of the average value,
the minimum value of all the chemotactic cost functions is
retained for deciding the bacterium’s health. This speeds up
the convergence, because in the average scheme described by
Passino [1] it may not retain the fittest bacterium for the
subsequent generation. Second, for swarming the distances
of all the bacteria in a new chemotactic stage are evaluated
from the globally optimal bacterium to these points and not
the distances of each bacterium from the rest of the others,
as suggested by Passino [1]. Simulation results indicated the
superiority of the proposed approach over the classical BFOA
for the multiobjective optimization problem involving the uni-
fied power flow controller (UPFC) location, its series-injected
voltage, and the transformer tap positions as the variables.
Mishra and Bhende used the modified BFOA to optimize
the coefficients of proportional integral (PI) controllers for
active power filters [6]. The proposed algorithm was found to
outperform a conventional GA with respect to the convergence
speed.

Mishra [4] proposed a Takagi–Sugeno-type fuzzy inference
scheme for selecting the optimal chemotactic step size in
BFOA. The resulting algorithm, referred to as “fuzzy bacterial
foraging” (FBF), was shown to outperform both classical
BFOA and a GA when applied to the harmonic estimation
problem. However, the performance of the FBF crucially
depends on the choice of the membership function and the
fuzzy rule parameters [4], and there is no systematic method
(other than trial and error) to determine these parameters for
a given problem. Hence FBF, as presented in [4], may not be
suitable for optimizing any benchmark function in general.

Hybridization of BFOA with other naturally inspired meta-
heuristics has remained an interesting problem for the re-
searchers. In this context, Kim et al. proposed a hybrid
approach involving GA and BFOA for function optimization
[3]. The proposed algorithm outperformed both GA and BFOA
over a few numerical benchmarks and a practical PID con-
troller design problem. Biswas et al. proposed a synergism of
BFOA with another very popular swarm intelligence algorithm
well known as the particle swarm optimization (PSO). The
new algorithm, named by the authors as “bacterial swarm op-
timization” (BSO) [27], was shown to perform in a statistically
significantly better way as compared to both of its classical
counterparts over several numerical benchmarks.

Ulagammai et al. applied BFOA to train a wavelet-based
neural network (WNN) and used the same for identifying the
inherent nonlinear characteristics of power system loads [28].
Munoz et al. [29] used BFOA for the dynamical resource
allocation in a multiple input/output experimentation platform,
which mimics a temperature grid plant and is composed of
multiple sensors and actuators organized in zones. Acharya et
al. proposed a BFOA-based independent component analysis
(ICA) [30] that aims at finding a linear representation of non-
Gaussian data so that the components are statistically inde-
pendent or as independent as possible. The proposed scheme
yielded better mean square error performance as compared
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P

Q

θ

J (θ)

Fig. 2. Continuous 1-D fitness landscape for BFOA. The analysis presented
here holds perfect for regions like the shaded one.

to a constrained genetic algorithm-based ICA (CGAICA).
Chatterjee et al. [31] reported an interesting application of
BFOA to improve the quality of solutions for the extended
Kalman filters (EKFs), such that the EKFs can offer solutions
to simultaneous localization and mapping (SLAM) problems
for mobile robots and autonomous vehicles.

To the best of our knowledge, none of the existing works
has, however, attempted to develop a full-fledged mathematical
model of the bacterial foraging strategies for investigating im-
portant issues related to convergence, stability, and oscillations
of the foraging dynamics near global optima.

IV. SIMPLE ALGEBRAIC ANALYSIS OF THE

COMPUTATIONAL CHEMOTAXIS

Let us consider a single bacterium cell that undergoes
chemotactic steps according to (1) over a 1-D objective
function. The bacterium lives in continuous time and at the
t th instant its position is given by, which is a real number. Let
the objective function to be minimized be J (x) = x2. Below
we list a few assumptions that were considered for the sake
of gaining mathematical insight into the process.

1) The objective function J (x) is continuous and differen-
tiable at all points in the search space. (Note that BFOA
is a derivative-free optimization technique and can in
general handle discontinuous and nondifferentiable func-
tions also. We, however, make the above assumption in
order to simplify the mathematical manipulations.)

2) The chemotactic step size C is not very large (Passino
himself took C = 0.1).

3) The analysis applies to the regions of the fitness land-
scape where gradients of the function are small, i.e., near
the optima.

According to assumption 3), the analysis will be restricted to
within regions like the shaded one in Fig. 2. In Fig. 2, the
dashed line arrow represents velocity of the bacterium and the
blue arrow shows the gradient vector. We note that the velocity
vector does not necessarily coincide with the gradient vector.
Initially, the bacterium was at point P and it moves to point
Q. Here, the vector PQ shows the direction of velocity of the
bacterium.

Iterations

Unit time

Actual Position

Approximation

Po
si

tio
n 

of
 b

ac
ta

ri
um

1 2 3 4 5

P

Δt

2.5

3

3.5

4

4.5

2

5

6 7 80 9

Fig. 3. Bacterium changing positions instantaneously and its approximated
counterpart.

A. Analytical Treatment

Let the position of an individual bacterium at time t be
θ(t) and value of objective function J (θ). As θ(t) is a
function of time, the value of the objective function associated
with this bacterium J (θ(t)) is also changing with time. The
bacterium may change its position continuously with time.
Computer simulation of the algorithm, however, proceeds
through discrete iterations (chemotactic steps). Certain amount
of processor time is elapsed between two successive iterations.
Thus, in the virtual world of simulations, a bacterium can
change its position only at certain discrete time instants.
This change of position is ideally instantaneous. In between
two successive iterations the bacterium remains practically
immobile. Without losing generality, the time between two
successive iterations may be defined as unit time for the
following derivation. The situation is depicted in Fig. 3, where
the bacterium changes its position instantly at certain discrete
time points. But we have assumed that the bacterium lives in
continuous time, where it is not possible to have instantaneous
position change. Hence, we assume that within two successive
iterations the position shifts continuously and linearly [e.g., for
time intervals (2–3), (4–5), (8–9)]. In practice, time between
two successive iterations, i.e., computational time of iteration,
is very small. This ensures that the linear approximation is
fairly good.

Let us assume that, after an infinitesimal time interval�t ,
its position changes by an amount �θ from θ(t) when
the objective function value becomes smaller for changed
position. Fig. 4 reveals the nature of the time rate of change
of position of the bacterium. We can now define the velocity
of the bacterium as

Vb = Lim
�t→0

�θ

�t
. (5)

Naturally, here we assume the time to be unidirectional (i.e.,
�t > 0).

From Fig. 4 it can be observered that the velocity of
bacterium is a train of pulses occuring at certain points of
time. As the pulse width is diminished its height is increased.
Ideally, position changes instanteneously making height of the
pulse tending toward infinity. Regardless of the pulse width,
area under the rectangle is always equal to step height C (0.1
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Fig. 4. Variation of velocity with successive iterations.

in this case). As we assume velocity to be constant over the
complete interval (i.e., the position changes uniformly), its
magnitude becomes C . In Figs. 3 and 4, iterations signify the
successive chemotactic steps taken by the bacterium. Time
between two consecutive iterations is elapsed in necessary
computation associated with one step.

Now, according to BFOA, the bacterium changes its position
only if the modified objective function value is less than the
previous one i.e., J (θ) > J (θ +�θ) i.e., J (θ)− J (θ +�θ)
is positive. This ensures that the bacterium always moves in
the direction of decreasing objective function value. In this
analysis we denote the unit vector along the direction of
tumble by �, i.e., � here is analogous to the unit vector
�(i)/

√
�T (i).�(i) in (1) as used by Passino for a multidi-

mensional fitness landscape. Note that for a 1-D problem, �
is of unit magnitude and hence can assume only two values 1
or −1 with equal probabilities. Thus its value would remain
unchanged after dividing it by square of its amplitude [as done
in Step 4(e) of the classical BFO algorithm]. The bacterium
moves by an amount of C.� if objective function value is
reduced for new location. Otherwise, its position will not
change at all. Assuming uniform rate of position change, if the
bacterium moves C.� in unit time, its position is changed by
(C.�)(�t) in �t seconds. It decides to move in the direction
in which concentration of nutrient increases or, in other words,
the objective function decreases i.e., J (θ) − J (θ +�θ) > 0.
Otherwise, it remains immobile. We have assumed that �t is
an infinitesimally small positive quantity, and thus sign of the
quantity J (θ)− J (θ +�θ) remains unchanged if �t divides
it. So, the bacterium will change its position if and only if
(J (θ) − J (θ + �θ))/�t is positive. This crucial decision-
making (i.e., whether to take a step or not) activity of the
bacterium can be modeled by a unit step function (also known
as Heaviside step function [32]) defined as

u(x) = 1, if x > 0

= 0, otherwise (6)

and thus,

�θ = u

(
J (θ)− J (θ +�θ)

�t

)
.(C.�)(�t). (7a)

Evidently, �θ = 0 if J (θ) ≤ J (θ + �θ) and �θ =
(C.�).�t if J (θ) > J (θ +�θ).

Dividing both sides of (7a) by �t we get

�θ

�t
= u

[
J (θ)− J (θ +�θ)

�t

]
.C.�

⇒ �θ

�t
= u

[
−{J (θ +�θ)− J (θ)}

�t

]
.C.�. (7b)

From (5) we have

Vb = Lim
�t→0

�θ

�t
= Lim
�t→0

[
u

{
− J (θ +�θ)− J (θ)

�t

}
.C.�

]

⇒ Vb = Lim
�t→0

[
u

{
− J (θ +�θ)− J (θ)

�θ

�θ

�t

}
.C.�

]
.

As �t → 0 makes �θ → 0, we may write

Vb = u

{
−

(
Lim
�θ→0

J (θ +�θ)− J (θ)

�θ

)(
Lim
�t→0

�θ

�t

)}
.C.�.

Again, J (x) is assumed to be continuous and differentiable.
Lim
�θ→0

(J (θ +�θ) − J (θ))/�θ is the value of the gradient at

that point and may be denoted by (d J (θ)/dθ) or G. Therefore
we have

Vb = u(−GVb).C.� (8)

where G = (d J (θ)/dθ) = gradient of the objective func-
tion at θ . In (8), the argument of the unit step function is
−GVb. The value of the unit step function is 1 if G and
Vb are of different sign, and in this case the velocity is C�.
Otherwise, it is 0, making the bacterium motionless. So (8)
suggests that the bacterium will move in the direction of
negative gradient. Since the unit step function u(x) has a jump
discontinuity at x = 0, to simplify the analysis further, we
replace u(x) with the continuous logistic function φ(x), where
φ(x) = 1/(1 + e−kx ). We note that

u(x) = Lt
k→∞φ(x) = Lt

k→∞
1

1 + e−kx
. (9)

Fig. 5 illustrates how the logistic function may be used to
approximate the unit step function used for decision making
in chemotaxis. For analysis purpose, k cannot be infinity. We
restrict ourselves to moderately large values of k (say, k = 10)
for which φ(x) fairly approximates u(x). Section IV-C de-
scribes the error limit introduced by this assumption. Thus, for
moderately high values of k, φ(x) fairly approximates u(x).
Hence from (8)

Vb = C.�

1 + ekGVb
. (10)

According to assumptions 1) and 3), if C and G are very
small and k ∼ 10, then also we may have |kGVb| << 1. In
that case we neglect the higher order terms in the expansion
of ekgvb and have ekgvb ≈ 1 + kGVb. Substituting it in (10)
we obtain

Vb = C.�

2 + kGVb

⇒ Vb = C.�

2

1

1 + kGVb
2
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Fig. 5. (a) Unit step and (b) logistic functions.

⇒ Vb = C.�

2

(
1 − kGVb

2

)

[∵ | kGVb
2 | << 1, neglecting higher terms, (1 + kGVb

2 )−1 ≈
(1 − kGVb

2 )].
After some manipulation we have

Vb = 2C.�

4 + kGC.�
.

⇒ Vb = C.�

2

1

1 + kCG�
4

⇒ Vb = C.�

2

(
1 − kGC�

4

)
(11)

(∵ | kGC�
4 | = | kGC

4 | << 1, as |�| = 1 and neglecting the
higher order terms.)

⇒ Vb = C.�

2
− kGC2�2

8

⇒ Vb = −kC2

8
G + C.�

2
[∵ �2 = 1]. (12)

Equation (12) is applicable to a single bacterium system and
it does not take into account the cell-to-cell signaling effect. A
more complex analysis for the two-bacterium system involving
the swarming effect has been included at the Appendix. It
indicates that a complex perturbation term is added to the dy-
namics of each bacterium due to the effect of the neighboring
bacteria cells. However, the term becomes negligibly small
for small enough values of C(∼ 0.1) and the dynamics under

these circumstances get practically reduced to that described in
(12). In what follows, we shall continue the analysis for single
bacterium system for better understanding of the chemotactic
dynamics.

B. Experimental Verification of Characteristic Equation
of Chemotaxis

The characteristic equation of chemotaxis (12) represents
the dynamics of bacterium taking chemotactic steps. In order
to verify how reliably the equation represents the motion of
the virtual bacterium, we compare results obtained from (12)
with that of BFOA. First, the equation is expressed in iterative
form, which is

Vb(n) = θ(n)− θ(n − 1) = −kC2

8
G(n − 1)+ C.�(n)

2

⇒ θ(n) = θ(n − 1)− kC2

8
G(n − 1)+ C.�(n)

2
(13)

where n is the iteration index. The tumble vector is also a
function of iteration count (i.e., chemotactic step number) i.e.,
it is generated repeatedly for successive iterations. We have
taken J (θ) = θ2 as the objective function for this experimen-
tation. Bacterium was initialized at −2, i.e., θ(0) = −2, and C
is taken as 0.2. The gradient of J (θ) is 2θ . Therefore G(n−1)
may be replaced by 2θ(n − 1). Finally, for this specific case
we get

θ(n) =
(

1 − kC2

4

)
θ(n − 1)+ C.�(n)

2
. (14)

We compute values of θ(n) for successive iterations accord-
ing to above iterative relation. Also, values of positions are
noted following guidelines of BFOA. The current position is
changed by C.� if objective function value decreases for new
position. The results are presented in Fig. 6. Fig. 6(a) shows
the position in successive iterations according to BFOA and
as obtained from (14). Here also we have assumed that the
position of bacterium changes linearly between two consecu-
tive iterations. Mismatch between actual and predicted values
is also shown. In Fig. 6(b), the actual and predicted values of
velocity are shown. Velocity is assumed to be constant between
two successive iterations. According to BFOA, the magnitude
of velocity is either C(0.2 in this case) or 0. The difference
between the actual and predicted velocity is shown as the
error. The time lapsed between two consequent iterations is
spent for computation and is termed as “unit time.” This may
be perceived as the time required by a bacterium to measure
the nutrient content of a new point on the fitness landscape.
Actually, it is the time taken by the processor to perform
numerical computations.

C. Estimation of Error and Limitations of the Analysis

Due to the approximation of the unit step function, a small
error has been introduced in the analysis. Again we have
simplified the function for some special cases [assumptions
2) and 3)]. Here, magnitude of maximum possible value of
error in estimation of Vb equals |(C.�)/2| = C/2. ∵ |�| = 1.
According to (9) we may replace u(x) approximately by the
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Fig. 6. Comparison between actual and predicted motional state of the
bacterium. (a) Actual predicted positions of bacterium and error in estimation
over successive iterations and (b) similar plots for velocity of the bacterium.

logistic function ϕ(x) = 1/(1 + e−kx ) for moderately high
values of k. If x is small, we may again approximate the
logistic function with the following equation of a straight line
as:

ϕ(x) = k

4
x + 1

2
. (15)

These simplifications have already been undertaken in (10)–
(12) of Section IV-A, where x = GVb. The straight line,
which approximates the logistic function as shown in Fig. 7,
intersects the graph of the logistic function at two points
A and B. When |x | > OA or |x| > OC, the error in the
decision-making term of our analysis gradually increases. So
we must restrict the analysis to within the region AC, i.e.,
magnitude of GVb has certain limits. As shown in Fig. 7,
x must lie between A and C, i.e., ϕ(x) should be restricted
within the range [0, 1], or otherwise considerable error creeps

ideal logistic function

A O

ϕ(x)

C

B

x

linear approximation

Fig. 7. Region of error due to approximation of the unit step with the logistic
functions.

into the analysis. After imposing these constraints on (15),
we get

x
k

4
+ 1

2
≤ 1 and x

k

4
+ 1

2
≥ 0. (16)

After solving above couple of inequalities, we finally obtain

|x | ≤ 2

k
. (17)

Substituting x by GVb in (17), we get

|Vb| ≤ 2

k|G| . (18)

From (12) and the above inequality, we get

2

k|G| ≥ |Vb| =
∣∣∣∣C�

2
− kC2

8
G

∣∣∣∣ . (19)

We know any two numbers a and b, |a − b| ≥ |a| ∼ |b|.
Hence

∣∣∣∣C�

2
− kC2

8
G

∣∣∣∣ ≥
∣∣∣∣C�

2

∣∣∣∣ −
∣∣∣∣kC2

8
G

∣∣∣∣ = C

2
− kC2

8
|G|.

[C > 0, k > 0 and� can assume values 1 and −1 randomly,
giving |�| = 1].

Incorporating inequality (19) in the above, we get

2

k|G| ≥
∣∣∣∣C�

2
− kC2

8
G

∣∣∣∣ ≥ C

2
− kC2

8
|G|. (20)

Again, as, |a − b| ≥ |b| − |a|∣∣∣∣C�

2
− kC2

8
G

∣∣∣∣ ≥
∣∣∣∣kc2

8
G

∣∣∣∣ −
∣∣∣∣C�

2

∣∣∣∣ = kC2

8
|G| − C

2
.

Incorporating inequality (19) in above, we further get

2

k|G| ≥
∣∣∣∣C�

2
− kC2

8
G

∣∣∣∣ ≥ kC2

8
|G| − C

2
. (21)

Inequality (20) implies that

2

k|G| ≥ C

2
− kC2

8
|G|

⇒ (k|G|C − 2)2 + 12 ≥ 0

which is trivially true.
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Fig. 8. Sample fitness landscape for studying the computational chemotaxis.

From inequality (21), we get

2

k|G| ≥ kC2

8
|G| − C

2

⇒ k2|G|2C2 − 4k|G|C − 16 ≤ 0

⇒ − 2

k|G| (
√

5 − 1) ≤ C ≤ 2

k|G| (1 + √
5).

But since C > 0

0 < C ≤ 2

k|G| (1 + √
5). (22)

Now, let us assume within our domain of analysis that
|G|max is the maximum possible magnitude of gradient. The
2/(k|G|)(1 + √

5) term is minimized when |G| = |G|max.
Our analysis is valid if the chemotactic step size is less than
or equal to this minimum value, i.e., 2/(k|G|max)(1 + √

5).
So we define maximum allowable value of chemotactic step
size as Cmax = 2/(k|G|max)(1 + √

5). If |G|max is large,
the maximum allowable step size almost vanishes making
our analysis invalid for moderately small values of step size.
From this consideration also, we should restrict the domain
of analysis to within the region with moderate value of
gradient.

D. Chemotaxis and the Classical Gradient Decent Search

From (12) of Section IV-A, we get

Vb = −kC2

8
G + C.�

2
⇒ dθ

dt
= −α′G + β ′ (23)

where α′ is (−kC2)/8 and β ′ is (C�)/2. The classical
gradient descent search algorithm is given by the following
dynamics in single dimension [10]:

dθ

dt
= −α.G + β (24)

where α is the learning rate and β is the momentum. The
similarity between (23) and (24) suggests that chemotaxis may
be considered a modified gradient descent search, where α′,
which is a function of chemotactic step-size, can be identified
as the learning rate parameter.

Already we have discussed in Section IV-C that the mag-
nitude of gradient should be small within the region of our
analysis. So we choose point P in the 1-D fitness landscape
shown in Fig. 8 as the operating point for our analysis.
For chemotaxis of BFOA, when G becomes very small, the
gradient descent term α′G of (23) becomes ineffective. But
the random search term (C.�)/2 plays an important role in
this context. From (23), considering G → 0, we have

dθ

dt
= C.�

2
�= 0. (25)

So there is a convergence toward actual minima. Fig. 8
shows a region on the fitness landscape with very a small value
of gradient. The random search or momentum term (C.�)/2
in the RHS of (12) provides an additional feature to the
classical gradient descent search. When the gradient becomes
very small, the random term dominates over gradient decent
term and the bacterium changes its position. But the random
search term may lead to change in position in the direction of
increasing objective function value. If it happens, then again
the magnitude of the gradient increases and dominates the
random search term.

E. Oscillation Problem: Need for Adaptive Chemotaxis

If magnitude of the gradient decreases consistently near the
optima or very close to the optima, α′G of (23) becomes
comparable to β. Then, gradually β becomes dominant. When
|G| → 0, |(dθ)/(dt)| ≈ |β| = |(C�)/2| = C/2 ∵ |�| = 1.
Let us assume the bacterium has reached close to the optimum.
But since we obtain |(dθ)/(dt)| = C/2, the bacterium does
not stop taking chemotactic steps but oscillates about the
optima. This crisis can be remedied if step size C is made
adaptive according to the following relation:

C = |J (θ)|
|J (θ)| + λ

= 1

1 + λ/|J (θ)| (26)

where λ is a positive constant. The choice of a suitable value
for λ is discussed in the next section. Here we have assumed
that the global optimum of the cost function is 0. Thus from
(26), if J (θ) → 0, then C → 0. So there would be no
oscillation if the bacterium reaches optima because the random
search term vanishes as C → 0. The functional form given in
(26) causes C to vanish near the optima. On the other hand,
from (26) we observe that when J (θ) is large, λ/(|J (θ)|) → 0
and consequently C → 1.

The adaptation scheme presented in (26) has an important
physical significance. If the magnitude of objective function
is large for an individual bacterium, it is in the vicinity of
a noxious substance. It will then try to move to a place with
better nutrient concentration by taking large steps. On the other
hand, when the bacterium is in a nutrient-rich zone, i.e., with
small magnitude of the objective function value, it tries to
retain its position. Naturally, its step size becomes small.

F. Adaptive Chemotaxis for Avoiding the Lock in State

Let us consider an even function J (θ) (as shown in Fig. 9),
which has its minima at θ = 0 and its minimum value equal
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J(θ)

θ
P O Q

Fig. 9. Fitness landscape for the function J (θ) = θ2.

to 0. Let us also assume the function is increasing in the
interval [0, ϕ] and decreasing in [−ϕ, 0] (e.g., J (θ) = θ2 is an
even function where it is increasing in the interval (0,∞) and
decreasing in (−∞, 0) so in this case ϕ → ∞). A special case
of stagnation may occur within the region (−ϕ, ϕ). We here
refer to this situation as “lock in.” The lock in condition arises
when a bacterium has reached somewhat near the optima of
a function and its further movements are not possible due to
the comparatively large step size.

Example 1: Suppose we have to minimize a 1-D function
J (θ) = θ2. A plot of the function has been provided in Fig. 9.

In Fig. 9, let |PO| = |QO| = |θ |. We also assume that
he bacterium is currently at the position θ = θ , i.e., it is
at Q. Now, in classical chemotaxis three cases may arise as
described below:

Case I: Let step size C = 2 |θ |. Then, for � = −1, the
bacterium should move to P. But as in this case its objective
function value remains same, it does not come to P but stays
at Q [as J (θ) = J (−θ) = θ2]. As � = 1 tries to shift
the bacterium to the right (where the objective function value
increases again), it again stays at Q. Hence the bacterium gets
trapped at Q.

Case II: Let C > 2 |θ |. In that case, the bacterium remains
immobile for both values of �. Here step size is constant and
greater than 2 × |θ |. If the bacterium moves in any one of the
two directions, the value of the objective function increases.
So, bacterium is trapped.

Case III: Let C < 2 |θ |. In this case, bacterium will move
to some point in the left of origin. However, C is fixed (say,
0.5). So, after certain iterations any one of Case II and I must
arise.

The situation of the bacterium in these three cases is
depicted in Fig. 10.

Now consider the situation where the step size has been
adapted according to (26). Then we have C = (θ2)/(θ2 + λ).
The lock in states never occur if, for all possible values, of θ

C < 2|θ |
⇒ |θ |2

|θ |2 + λ
< 2|θ |

⇒ |θ |2 < 2|θ |(|θ |2 + λ)
[
∵ |θ |2 + λ > 0

]
⇒ λ >

|θ |
2

− |θ |2.

J(θ)

θ

C = ⏐PQ⏐

⏐PQ⏐

P O Q

(a)

J(θ)

C>⏐PQ⏐

⏐PQ⏐

θPP' O Q

(b)

J(θ)

C>⏐PQ⏐

⏐PQ⏐

θP P' O Q

(c)

Fig. 10. Situation of a bacterium cell near the global optimum in classical
chemotaxis: (a) Case I. (b) Case II. (c) Case III.

Let us consider f (|θ |) = (|θ |)/2 − |θ |2. The maximum
value of the function is obtained when (d f (|θ |))/(d|θ |) =
0 ⇒ |θ | = 1/4. Putting |θ | = 1/4, we get

arg max
θ

f (|θ |) = f

(
1

4

)
= 1

16
.

Hence, for all values of θ , if λ > f (|θ |) ⇒ λ > (1/16),
no trapping or sustained oscillations of the bacterium cell will
arise near the global optimum. In this case, the bacterium cell
will follow a trajectory as depicted in Fig. 11.

Next we provide a brief comparison between BFOA and the
proposed ABFOA over the 1-D objective function J (θ) = θ2.
Each algorithm uses only a single bacterium, and in both
the cases it is initialized at θ(0) = 6.0. We have taken
λ > (1/16) to avoid lock in. The results of five iterations are
tabulated in Table I and the convergence characteristics have
been graphically presented in Fig. 12. The iteration signifies

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 13, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



DASGUPTA et al.: ADAPTIVE COMPUTATIONAL CHEMOTAXIS IN BACTERIAL FORAGING OPTIMIZATION: AN ANALYSIS 929

1

O θ

J(θ)
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Fig. 11. Convergence toward the global optima for adaptive step size in
chemotaxis.

TABLE I

VARIATION OF BACTERIUM POSITION 	 WITH CHEMOTACTIC STEPS FOR

ADAPTIVE STEP SIZE C

Chemotactic step
number

According to BFOA According to ABFOA1
θ θ

1 0.600000 0.600000

2 0.170000 -0.175862

3 0.170000 0.053353

4 0.170000 0.053353

5 0.170000 0.026712

the chemotactic step number in this case. We can observe that,
due to its constant step size, the BFOA-bacterium stops before
reaching the optima. For ABFOA, the bacterium adapts the
step size according to objective function value and gradually
nears the optima. We get a better quality of the final solution
in this case.

G. Special Case

If the optimum value of the objective function is not
exactly zero, the step size adapted according to (26) may
not vanish near optima. The step size would shrink if the
bacterium come closer to the optima, but it may not approach
zero always. To get faster convergence for such functions
it becomes necessary to modify the adaptation scheme. The
use of gradient information in the adaptation scheme, i.e.,
making the step size a function of the function gradient [say,
C = C(J (θ),G)] may not be practical enough, because in
real-life optimization problems, we often deal with discon-
tinuous and nondifferentiable functions. Note that algorithms
like standard gradient methods, quasi-Newton methods [33],
Levenbarg–Marquardt algorithm [18], etc. depend on the use
of an explicit analytical representation of the first- or second-
order derivative, something that is not needed by a foraging
or genetic algorithm. Even the classical BFOA uses only an
approximation of the gradient and not the analytical gradient
information. Thus, in order to keep BFOA a general black-
box optimizer, our adaptive scheme should be a more general
one, performing satisfactorily over discontinuous as well as
nondifferentiable objective functions. Therefore we propose

Iterations

Po
si

tio
n 

of
 B

ac
te

ri
um

0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

BFOA
ABFOA1

Fig. 12. Variation of bacterial position θ with time near the global optima
for classical and adaptive chemotaxis.
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Fig. 13. Objective function with optimum value much greater than zero
and a group of seven bacteria scattered over the fitness landscape. Their step
heights are also shown.

an alternative adaptation strategy in the following way:

C = |J (θ)− Jbest |
|J (θ)− Jbest | + λ

. (27)

Jbest is the objective function value for the globally best
bacterium (one with the lowest value of the objective function).
|J (θ)− Jbest | is the deviation in fitness value of an individ-
ual bacterium from the global best. Expression (27) can be
rearranged to give

C = 1

1 + λ
|J (θ)−Jbest |

. (28)

If a bacterium is far away from the global best,
|J (θ)− Jbest | would be large, making C ≈ 1 ∵ (λ)/(|J (θ)−
Jbest |) → 0. On the other hand, if another bacterium is very
close to it, the step size of that bacterium will almost vanish
because |J (θ)− Jbest | becomes small and the denominator of
(28) grows very large. This scenario is depicted in Fig. 13. In
what follows, we shall refer to the BFOA with the adaptive
scheme of (26) as ABFOA1 and the BFOA with the adaptation
scheme described in (27) as ABFOA2.
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Fig. 13 shows how the step size becomes large as the
objective function value becomes larger for an individual
bacterium. The bacterium with better function value will try
to take a smaller step and retain its present position. For the
best bacterium of the swarm, |J (θ)− Jbest | is 0. Thus, from
(27) its step size is 1/λ, which is quite small. The adaptation
scheme bears a physical significance, too. A bacterium located
at a relatively less nutrient region of the fitness landscape will
take large step sizes to attain better fitness; whereas another
bacterium located at a location best in regard to nutrient
content is unlikely to move much.

Note that the globally best solution vector (one which yields
the lowest objective function value) is employed to change the
other population members in some derivative-free optimization
techniques such as PSO [19] and the differential evolution
(in variants like DE/best/1, DE/target-to-best/1/bin, etc.) [34].
Our adaptation scheme in (27) is, however, based on the best
objective function value and not on the global best position
itself.

In this context, it is worth mentioning that the chemotactic
step size C controls the amplitude of the step taken by a
bacterium toward a random direction specified by the tumble
vector �. Effectively, the role of C is somewhat similar to the
mutation step size employed by evolutionary strategies (ESs)
[35] and evolutionary programming (EP) [36]. In some self-
adaptive variants of ES [37], [38], the mutation step size is
evolved along with other search variables. The self-adaptation
rules from ESs have also been incorporated into EP [39]. Some
variants of EP incorporating the self-adaptation of variances of
mutations have been proposed in literature [40], [41]. Recently,
Lee and Yao [42] studied a new mutation scheme for EP
based on the Lévy probability distribution. The Lévy mutation
operator proposed by them can lead to a large mutation step
size (i.e., large variance) and a large number of distinct values
in evolutionary search, as compared to the classical Gaussian
mutation. Our present adaptation schemes of the chemotactic
step size follows from a simple differential equation-based
model of the bacterial dynamics and differs substantially from
the adaptation mechanisms commonly found in the ES or EP
literature. However, it is interesting to investigate in future the
adaptation of C and � based on Cauchy or Lévy probability
density functions, taking inspirations from the works reported
in [42], [43].

For real-world optimization problems, where the optimum
value of the objective function is zero, the adaptation scheme
of (26) works satisfactorily. But for functions that do not
have a small optimum value, (27) should be used for better
convergence. Note that neither of two proposed schemes
contains the derivative of objective function, so they can be
used for discontinuous and nondifferentiable functions as well.

V. EXPERIMENTS AND RESULTS OVER BENCHMARK

FUNCTIONS

This section presents an extensive comparison among the
performances of two adaptive BFOA schemes (ABFOA1 and
ABFOA2), the classical BFOA, the BSO algorithm, a standard
real-coded GA, and one of the state-of-the-art variants of the
PSO algorithm.

A. Numerical Benchmarks

Our test suite includes 10 well-known benchmark functions
[43] of varying complexity. In Table II, p represents the
number of dimensions and we used p = 15, 30, 45, and 60
for functions f1 to f7, while functions f8 to f10 are 2-D.
The first function is unimodal with only one global minimum.
The others are multimodal with a considerable number of
local minima in the region of interest. Table II summarizes
the initialization and search ranges used for all the functions.
An asymmetrical initialization procedure has been used in this
research following the work reported in [44].

B. Algorithms Used for the Comparative Study and Their
Parametric Setup

1) BFOA and its Adaptive Variants: The original BFO and
the two adaptive BFOA schemes employ the same parametric
setup, except with the difference that the chemotactic step
sizes in ABFOA1 and ABFOA2 have been made adaptive
according to (25) and (26), respectively. After performing
a series of hand-tuning experiments, we found that keeping
λ = 4000 provides considerably good results for both the
adaptive schemes over all benchmark functions considered
here. The chemotactic step-size C(i) was kept at 0.1 in the
classical BFOA. Rest of the parameter settings that were kept
same for these algorithms have been provided in Table III. In
order to make the comparison fair enough, all runs of the three
BFOA variants start from the same initial population over all
the problem instances.

2) HPSO-TVAC Algorithm: PSO [19, 45] is a stochastic
optimization technique that draws inspiration from the behav-
ior of particles, the boids method of Reynolds, and socio-
cognition. In the classical PSO a population of particles
is initialized with random positions �Xi and velocities �Vi ,
and a function f is evaluated using the particle’s positional
coordinates as input values. In a D-dimensional search space,
�Xi = [xi1, xi2, . . . , xi D]T and �Vi = [vi1, vi2, . . . , vi D]T .

Positions and velocities are adjusted, and an objective
function is evaluated with the new coordinates at each time
step. The fundamental velocity and position update equations
for the dth dimension of the i th particle in the swarm may be
given as

vid(t + 1) = ω.vid(t)+ C1.ϕ1.(Pid − xid(t))

+ C2.ϕ2.(Pgd − xid(t)) (29a)

xid(t + 1) = xid(t)+ vid(t + 1). (29b)

The variables ϕ1 and ϕ2 are random positive numbers drawn
from a uniform distribution and restricted to an upper limit
ϕmax (usually equal to 2), which is a parameter of the system.
C1 and C2 are called acceleration coefficients, whereas ω is
known as the inertia weight. Pid is dth component of the
personal best solution found so far by an individual particle,
while Pgd represents dth element of the globally best particle
found so far in the entire community.

Ratnaweera et al. [46] recently suggested a parameter
automation strategy for PSO where the cognitive component
is reduced and the social component is increased [by varying
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TABLE II

DESCRIPTION OF THE BENCHMARK FUNCTIONS USED

Function Mathematical representation Range of search Theoretical optima

Sphere
function
( f1)

f1(�x) =
p∑

i=1
x2

i (–100, 100)p f1(�0) = 0

Rosenbrock
( f2)

f2(�x) =
p−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] (–100, 100)p f2(�1) = 0

Rastrigin
( f3)

f3(�x) =
p∑

i=1
[x2

i − 10cos(2πxi )+ 10] (–10, 10)p f3(�0) = 0

Griewank
( f4)

f4(�x) = 1
4000

p∑
i=1

x2
i −

p∏
i=1

cos
(

xi√
i

)
+ 1 (–600, 600)p f4(�0) = 0

Ackley
( f5)

f5( �X) = −20exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)

−exp

(
1
D

D∑
i=1

cos2πxi

)
+ 20 + e

(−32, 32)p f5(�0) = 0

Step
( f6)

f6( �X) =
p∑

i=1
(�xi + 0.5�)2 (–100, 100)p f6( �p) = 0,

− 1
2 ≤ pi <

1
2

Schwefel’s
Problem
2.22
( f7)

f7( �X) =
p∑

i=1
|xi | +

p∏
i=1

|xi | (–500, 500)p f7(�0) = 0

Shekel’s Fox-
holes
( f8)

f8(�x) =

⎡
⎢⎢⎣ 1

500 +
25∑
j=1

1

j+
2∑

i=1
(xi −ai j )

6

⎤
⎥⎥⎦

−1

(–65.536,
65.536)2

f8(−32,−32)
= 0.998

Six-Hump
Camel-Back
function
( f9)

f9( �X) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x6

2 (−5, 5)
f9(0.08983,−0.7126)
= f9(−0.08983, 0.7126)
= −1.0316285

Goldstein–
Price function
( f10)

f10(�x) = {1 + (x0 + x1 + 1)2(19 − 14x0 + 3x2
0

−14x1 − 6x0x1 + 3x2
1 )}{30 + (2x0 − 3x1)

2

×(18 − 32x0 + 12x2
0 + 48x1 − 36x0x1 + 27x2

1 )}
(−2, 2)2 f10(0,−1) = 3

TABLE III

COMMON PARAMETER SETUP FOR BFOA AND ADAPTIVE BFOA (ABFOA)

S Nc Ns Ned Nre ped dattractant wattractant wrepellant hrepellant λ

100 100 12 4 16 0.25 0.1 0.2 10 0.1 400

the acceleration coefficients C1 and C2 in (29a)] linearly
with time. They suggested another modification, named “self-
organizing hierarchical particle swarm optimizer,” in conjunc-
tion with the previously mentioned time varying acceleration
coefficients (HPSO-TVAC). In this method, the inertial ve-
locity term is kept at zero and the modulus of the velocity
vector is reinitialized to a random velocity, known as “re-
initialization velocity,” whenever the particle gets stagnant
(vid = 0) in some region of the search space. This way, a
series of particle swarm optimizers are generated automatically
inside the main particle system according to the behavior of
the particles in the search space, until some stopping criterion
is met. Here we compare this state-of-the-art version of PSO
with the adaptive BFOA schemes. The parametric setup for
HPSO-TVAC follows the work reported in [46]. The re-
initialization velocity is kept proportional to the maximum

allowable velocity
⇀

V max. We fixed the number of particles
equal to 40 and the inertia weight ω = 0.794. C1 was linearly

increased from 0.35 to 2.4, while C2 was allowed to decrease
linearly from 2.4 to 0.35. Finally,

⇀

V max was set at �Xmax.

3) Real-Coded GA: In this research, we used a standard
real-coded GA (also known as evolutionary algorithm or EA
[47]) that was previously found to work well on real-world
problems [48]. The EA works as follows: First, all individuals
are randomly initialized and evaluated according to a given
objective function. Afterwards, the following process will be
executed as long as the termination condition is not fulfilled:
Each individual is exposed to either mutation or recombination
(or both) operators with probabilities pm and pc, respectively.
The mutation and recombination operators used are Cauchy
mutation with an annealing scheme and arithmetic crossover,
respectively. Finally, tournament selection (of size 2) [47]
is applied between each pair of individuals to remove the
least fit members of the population. The Cauchy mutation
operator is similar to the well-known Gaussian mutation
operator, but the Cauchy distribution has thick tails that

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 13, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



932 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

enable it to generate considerable changes more frequently
than the Gaussian distribution. The Cauchy distribution may
be presented as

C(x, α, β) = 1

βπ

(
1 +

(
x−α
β

)2
) (30)

where α ≥ 0, β > 0, and −∞ < x < ∞. An annealing
scheme is employed to decrease the value of β as a function
of the elapsed number of generation t while α is fixed to 0.
In this paper, we used the following annealing function:

β = 1

1 + t
. (31)

In arithmetic crossover, the offspring is generated as a
weighted mean of each gene of the two parents, i.e.,

of f springi = r.parent1i + (1 − r).parent2i . (32)

The weight r is determined by a random value between 0
and 1. Here we fixed the population size at 100, pm = 0.9,
and pc = 0.7, for all the problem instances.

4) Bacterial Swarm Optimization: Biswas et al. [27] pro-
posed a hybrid optimization technique that synergistically
couples BFOA with PSO. The algorithm, referred to as the
BSO, performs local search through the chemotactic move-
ment operation of BFOA, whereas the global search over the
entire search space is accomplished by a PSO operator. In
this way it balances between exploration and exploitation,
enjoying the best of both the worlds. In BSO, after undergoing
a chemotactic step, each bacterium also gets mutated by a
PSO operator. In this phase, the bacterium is stochastically
attracted toward the globally best position found so far in
the entire population at the current time and also toward its
previous heading direction. The PSO operator uses only the
globally best position found by the entire population to update
the velocities of the bacteria and eliminates term involving
the personal best position, as the local search in different
regions of the search space is already taken care of by the
chemotactic operator of BFOA. The parametric setup for the
algorithm was kept exactly same as described in [27]. For the
PSO operator we choose ω = 0.8 and C2 = 1.494, while for
the BFO operators the parameter values were kept as described
in Table III.

C. Simulation Strategy

The comparative study presented in this paper focuses on
the following performance metrics: 1) the quality of the final
solution; 2) the convergence speed [measured in terms of
the number of fitness function evaluations (FEs)]; and 3) the
frequency of hitting the optima. Fifty independent runs of
each of the algorithms were carried out, and the average
and the standard deviation of the best-of-run values were
recorded.

For a given function of a given dimension, 50 independent
runs of each of the six algorithms were executed, and the
average best-of-run value and the standard deviation were
obtained. Different maximum numbers of function evaluations

(FEs) were used according to the complexity of the problem.
For benchmarks f1 to f7, the stopping criterion was set as
reaching an objective function value of 0.001. However, for f8,
f9, and f10 the stopping criteria are fixed at 0.998, −1.0316,
and 3.00, respectively. In order to compare the speeds of
different algorithms, we note down the number of FEs an
algorithm takes to converge to the optimum solution (within
the given tolerance). A lower number of FEs corresponds to a
faster algorithm. We also keep track of the number of runs of
each algorithm that manage to converge within the prespecified
error limit over each problem.

We used t-tests to compare the means of the results pro-
duced by the best ABFOA scheme and the best of the other
competitor algorithms over each problem. The t-test assumes
that the data has been sampled from a normally distributed
population. From the concepts of the central limit theorem,
one may note that as the sample sizes increase, the sampling
distribution of the mean approaches a normal distribution
regardless of the shape of the original population. A sample
size of around 50 allows the normality assumptions conducive
for performing the t-tests [49].

D. Empirical Results

Table IV compares the algorithms on the quality of the
best solutions obtained. The mean and the standard deviation
(within parentheses) of the best-of-run solution for 50 inde-
pendent runs of each of the 10 algorithms are presented in
Table IV. Note that in this table, if all the runs of a particular
algorithm converge to or below the prespecified objective
function value (0.001 for f1 to f6; 0.998, −1.0316, and 3.00
for f8, f9, and f10, respectively) within the maximum number
of FEs, then we report this threshold value as the mean of
50 runs. Missing values of standard deviation in these cases
indicate a zero standard deviation. Table V shows results of
t-tests between the best algorithm and the second best in each
case (standard error of difference of the two means, 95%
confidence interval of this difference, the t-value, and the two-
tailed P value). For all cases in Table III, the sample size
was 50 and number of degrees of freedom was 98. This table
covers only those cases for which a single algorithm achieves
the best accuracy of final results. Table VI shows, for all test
functions and all algorithms, the number of runs (out of 50)
that managed to find the optimum solution (within the given
tolerance) and also the average number of FEs taken to reach
the optima along with the standard deviation (in parentheses).
Missing values of standard deviation in this table also indicate
a zero standard deviation. The entries marked as zero in this
table indicate that no runs of the corresponding algorithm
could manage to converge within the given tolerance in those
cases. In all the tables, the entries marked in bold represent
the comparatively best results. The convergence characteristics
of six most difficult benchmarks have been provided in Fig.14
for the median run of each algorithm (when the runs were
ranked according to their final accuracies). Each graph shows
how the objective function value of the best individual in a
population changes with increasing number of FEs. Some of
the illustrations have been omitted in order to save space.
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TABLE IV

AVERAGE AND THE STANDARD DEVIATION (IN PARENTHESIS) OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS TESTED ON TEN

BENCHMARK FUNCTIONS

Func Dim
Maximum no.

of FEs
Mean best value (standard deviation)
BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

f1

15 5 × 104 0.0086
(0.0044)

0.001 0.001 0.001 0.001 0.001

30 1 × 105 0.084
(0.0025)

0.065
(0.0534)

0.036
(0.001)

0.056
(0.0112)

0.022
(0.00625)

0.044
(0.0721)

45 5 × 105 0.776
(0.1563)

0.383
(0.05564)

0.257
(0.0323)

0.354
(0.2239)

0.208
(0.0664)

0.419
(0.2096)

60 1 × 106 1.728
(0.2125)

1.364
(0.5136)

0.6351
(0.0298)

0.775
(0.4291)

0.427
(0.1472)

0.632
(0.5747)

f2

15 5 × 104 36.595
(28.1623)

94.472
(75.8276)

14.756
(10.5552)

0.673
(0.1454)

11.561
(2.355)

15.4931
(4.3647)

30 1 × 105 58.216
(14.3254)

706.263
(951.9533)

31.738
(3.6452)

15.471
(2.655)

4.572
(3.0631)

6.748
(2.6625)

45 5 × 105 96.873
(26.136)

935.2601
(1102.352)

67.473
(16.3526)

30.986
(4.3438)

24.663
(10.8644)

39.736
(30.6261)

60 1 × 106 154.705
(40.1632)

1264.287
(1323.5284)

109.562
(34.7275)

76.647
(24.5281)

91.257
(32.6283)

84.6473
(53.2726)

f3

15 5 × 104 10.4521
(5.6632)

9.467
(3.726)

0.4981
(0.0376)

0.2632
(0.2348)

0.3044
(0.6784)

2.6573
(0.0372)

30 1 × 105 17.5248
(9.8962)

34.837
(10.128)

3.797
(0.8241)

13.7731
(3.9453)

2.5372
(0.3820)

2.9823
(0.5719)

45 5 × 105 32.9517
(10.0034)

46.332
(22.4518)

8.536
(2.7281)

18.9461
(7.7075)

6.0236
(1.4536)

8.1121
(4.3625)

60 1 × 106 41.4823
(17.6639)

58.463
(66.4036)

12.0922
(4.5631)

10.2266
(2.8942)

8.3343
(0.2917)

9.4637
(6.7921)

f4

15 5 × 104 0.2812
(0.0216)

0.0564
(0.025810

0.05198
(0.00487)

0.1741
(0.097)

0.0321
(0.02264)

0.05113
(0.02351)

30 1 × 105 0.3729
(0.0346)

0.2175
(0.1953)

0. 2684
(0.3616)

0.2565
(0.1431)

0.1914
(0.0117)

0.2028
(0.1532)

45 5 × 105 0.6351
(0.0522)

0.4748
(0.4561)

0.3732
(0.0971)

0.5678
(0.236)

0.3069
(0.0526)

0.3065
(0.0923)

60 1 × 106 0.8324
(0.0764)

0.7462
(0.5521)

0.6961
(0.4737)

0.7113
(0.097)

0.5638
(0.3452)

0.6074
(0.5731)

f5

15 5 × 104 0.9332
(0.0287)

0.1217
(0.0125)

0.001482
(0.00817)

0.1025
(0.00347)

0.7613
(0.0542)

0.6757
(0.2741)

30 1 × 105 2.3243
(1.8833)

0.5684
(0.1927)

0.6059
(0.3372)

0.5954
(0.1246)

0.5038
(0.5512)

0.7316
(0.6745)

45 5 × 105 3.4564
(3.4394)

0.9782
(0.2029)

0.9298
(0.7631)

1.0383
(0.2542)

1.5532
(0.1945)

1.3672
(0.4618)

60 1 × 106 4.3247
(1.5613)

2.0293
(3.7361)

1.8353
(1.4635)

1. 9166
(0.536)

1.7832
(0.4581)

1.9272
(0.7734)

f6

15 5 × 104 0.0400
(0.00283)

0.001 0.001 0.001 0.001 0.001

30 1 × 105 2.0802
(0.00342)

0.7752
(0.4531)

0.001 0.4852
(0.28271)

0.001 0.001

45 5 × 105 14.7328
(3.2827)

13.8478
(2.5673)

6.8825
(0.6471)

4.2832
(0.6476)

1.1372
(0.8539)

1.2062
(0.5915)

60 1 × 106 19.8654
(4.8271)

15.8272
(2.5362)

12.6574
(0.4321)

17.6664
(0.3762)

2.3462
(0.3474)

6.1224
(1.5365)

f7

15 5 × 104 2.8271
(0.3029)

1.6645
(0.4198)

0.001 0.8817
(0.6362)

0.001 0.0442
(0.1096)

30 1 × 105 4.6354
(2.7753)

2.4861
(2.3375)

0.0642
(0.7681)

0.9043
(0.4186)

0.0084
(0.00037)

0.0405
(0.0252)

45 5 × 105 9.4563
(10.2425)

5.5674
(0.3526)

6.2452
(2.3724)

1.7828
(0.4652)

0.0484
(0.0335)

0.0563
(0.04634)

60 1 × 106 16.4638
(12.40940

10.6273
(12.4938)

11.5748
(9.3526)

6.4482
(7.4432)

0.8256
(0.2282)

1.4643
(0.9435)

f8 2 1 × 105 1.056433
(0.01217)

0.9998323
(0.00537)

0.9998329
(0.00382)

0.9998017
(0.00825)

0.9998564
(0.00697)

0.9998004
(0.00481)

f9 2 1 × 105 −0.925837
(0.000827)

−1.029922
(1.382)

−1.031149
(2.527)

−1.031242
(0.00759)

−1.03115
(0.0242)

−1.031593
(0.000472)

f10 2 1 × 105 3.656285
(0.109365)

3.1834435
(0.2645)

3.146090
(0.06237)

3.443712
(0.007326)

3.572012
(0.00093)

3.00000
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TABLE V

RESULTS OF t -TESTS ON THE DATA OF TABLE IV

Fn, Dim. Std. Err t 95% Confidence interval Two-tailed P

f1, 30 0.001 11.3352 −0.0164510 to −0.0115490 < 0.0001

f1, 45 0.010 4.6924 0.028277 to 0.069723 < 0.0001

f1, 60 0.021 9.7978 0.165951 to 0.250249 < 0.0001

f2, 15 0.334 32.6299 −11.550180 to −10.225820 < 0.0001

f2, 30 0.573 19.0122 9.761375 to 12.036625 < 0.0001

f2, 45 1.655 3.8212 3.039275 to 9.606725 = 0.0002

f2, 60 8.294 0.9646 −24.459658 to 8.459058 = 0.3371

f3, 15 0.102 0.4058 −0.242671 to 0.160271 0.6858

f3, 30 0.128 9.8071 1.004880 to 1.514720 < 0.0001

f3, 45 0.437 5.7471 1.644868 to 3.379932 < 0.0001

f3, 60 0.411 4.5999 1.075939 to 2.708661 < 0.0001

f4, 15 0.003 6.0702 0.0133808 to 0.0263792 < 0.0001

f4, 30 0.028 0.9433 −0.028808 to 0.081008 = 0.3479

f4, 45 0.019 3.5205 −0.104298 to −0.029102 0.0007

f4, 60 0.083 0.0929 −0.172197 to 0.156797 = 0.9262

f5, 15 0.039 17.3854 −0.75117727 to −0.59725873 < 0.0001

f5, 30 0.011 5.6430 −0.087318 to −0.041882 < 0.0001

f5, 45 0.126 3.4675 −0.687723 to −0.187077 = 0.0008

f5, 60 0.217 0.2402 −0.378277 to 0.482477 = 0.8107

f6, 45 0.092 20.5597 1.699894 to 2.063106 0.0001

f6, 60 0.061 42.7282 2.4899255 to 2.7324745 0.0001

f7, 30 0.109 0.5137 −0.1597643 to 0.2713643 = 0.6086

f7, 45 0.066 26.2949 1.603505 to 1.865295 < 0.0001

f7, 60 1.053 5.3390 3.532713 to 7.712487 < 0.0001

f8 0.001 0.0010 −0.002678813 to 0.002681413 0.9992

f9 0.000 2.7769 0.00010016 to 0.00060184 0.0066

f10 0.009 16.5626 0.12858610 to 0.16359390 < 0.0001

VI. DISCUSSION ON THE RESULTS

From Table IV, it may be observed that the performance of
both the adaptive variants remained consistently superior to
that of the classical BFOA over all benchmark problems. A
close inspection of Table IV also reveals that, out of 31 test
cases, the adaptive BFOA schemes (ABFOA1 or ABFOA2
or both) outperformed all other contestant algorithms in 22
cases. It is also interesting to note from Table V that, out
of these 22 benchmark instances, in 17 cases the difference
between means of the ABFOA methods and other algorithms
is statistically significant within a 95% confidence interval.

According to Table IV, EA and BSO remained the toughest
competitors of the adaptive BFOA variants in most of the
cases. The sphere function ( f1) is perhaps the easiest among
all tested benchmarks. From Tables IV and VI, we find that
for the 15-dimensional sphere 50 runs of all the algorithms
converged to or below the prespecified objective function value
of 0.001. Similar is the case for the step function ( f6) in 15
dimensions. BSO was found to yield better average accuracy
(i.e., numerically larger average value of the function) than
the proposed schemes over three cases ( f2 in 15 dimensions,
f2 in 60 dimensions, and f3 in 15 dimensions). However,
Table V indicates that, for functions f2 in 60 dimensions
and f3 in 15 dimensions, the differences are not statistically
significant. For functions f7, f8, and f9, since the optima
is not located at the origin, as expected, ABFOA2 with the
second adaptation scheme performs better than ABFOA1 and

the classical BFOA. Especially for function f9 and f10, the
final average accuracy of ABFOA2 is significantly better (as
evident from the two-tailed P-values in Table V) than all
other algorithms. Only in two cases ( f5 in 15 dimensions and
f5 in 45 dimensions). But for remaining functions ABFOA1
outperforms ABFOA2 in most of the cases. The EA was found
to outperform the adaptive BFO algorithms in a statistically
meaningful way. We find that only in two cases ( f1 in 15
dimensions and f6 in 15 dimensions) the HPSO-TVAC could
yield comparable results with respect to the EA, BSO, and
ABFOAs. We believe that the performance of this algorithm
could be improved by judiciously tuning its parameters.

Table VI and Fig. 14 are indicative of the fact that the
convergence behavior of the adaptive BFOAs has been con-
siderably improved in comparison to that of their classical
counterpart. From Table V, we note that in 24 problem
instances (out of 31) not only do the ABFOAs produce most
accurate results but they do so consuming the least amount
of computational time (measured in terms of the number of
FEs needed to converge). In addition, the frequency of hitting
the optima is also greatest for ABFOAs over most of the
benchmark problems covered here.

Since original BFOA and its adaptive variants start from the
same intial population and use a common parametetric setup,
the difference in their performance must have resulted from
the use of adaptive chemotactic step height in ABFOAs. This
observation also agrees with the simplified analytical treatment
provided in Section III.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 13, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



DASGUPTA et al.: ADAPTIVE COMPUTATIONAL CHEMOTAXIS IN BACTERIAL FORAGING OPTIMIZATION: AN ANALYSIS 935

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 (
L

og
)

No. of FEs

ABFOA1

BFOA
EA
BSO

ABFOA2
HPSO-TVAC

100
1 2 3 4 5 6 7 8 90 10

101

102

103

104

105

× 105

106

107

108

(a) Rosenbrock ( f2)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 (
L

og
)

No. of FEs

ABFOA2

BFOA
EA
BSO

ABFOA1
HPSO-TVAC

100
1 2 3 4 5 6 7 8 90 10

101

102

× 105

103

(b) Rasrigin ( f3)

0 1 2 3 4 5 6 7 8 9 10
No. of FEs × 105

104

103

102

101

100

10–1

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

(L
og

) BSO

ABFOA1

HPSO-TVAC

BFOA

ABFOA2

EA

(c) Griewank ( f4)

102

101
O

bj
ec

tiv
e 

Fu
nc

tio
n 

V
al

ue
 (

L
og

)

100
0 1 2 3 4 5

No. of FEs

6 7 8 9 10

× 105

ABFOA2
ABFOA1
BFOA
HPSO-TVAC
EA
BSO

(d) Ackley ( f5)

106

105

104

103

102

101O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 (
L

og
)

100

0 1 2 3 4 5

No. of FEs

6 7 8 9 10

× 105

ABFOA2
ABFOA1
BFOA
HPSO-TVAC
EA
BSO

(e) Step ( f6)

102

101

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 (
L

og
)

100

0 1 2 3 4 5

No. of FEs

6 7 8 9 10

× 104

ABFOA2
ABFOA1
BFOA
HPSO-TVAC
EA
BSO

(f) Goldstein–Price ( f10)

Fig. 14. Progress toward the optimum solution: (a)–(e) for dimension = 60 and (f) for dimension = 2.

VII. APPLICATION TO PARAMETER ESTIMATION FOR

FREQUENCY-MODULATED (FM) SOUND WAVES

Frequency-modulated (FM) sound synthesis plays an im-
portant role in several modern music systems. This section
describes an interesting application of the proposed ABFO
algorithms to the optimization of parameters of an FM synthe-
sizer. A few related works that attempt to estimate parameters

of the FM synthesizer using GA can be found in [50], [51].
Here, we introduce a system that can automatically generate
sounds similar to the target sounds. It consists of an FM
synthesizer, an ABFOA core, and a feature extractor. The
system architecture is shown in Fig. 15. The target sound is
a .wav file. The ABFOA initializes a set of parameters, and
the FM synthesizer generates the corresponding sounds. In the
feature extraction step, the dissimilarities of features between
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TABLE VI

NUMBER OF SUCCESSFUL RUNS, MEAN NUMBER OF FES AND STANDARD DEVIATION (IN PARANTHESIS) REQUIRED TO CONVERGE TO THE

THRESHOLD OBJECTIVE FUNCTION VALUE OVER THE SUCCESSFUL RUNS FOR FUNCTIONS f1 TO f10

Func Dim.
No. of runs converging to the pre-defined objective function value, mean no. of FEs required and
(standard deviation)
BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

f1

15 50, 16253.20
(445.34)

50, 12044.22
(610.298)

50, 13423.68
(341.827)

50, 1544.34
(85.261)

50, 1932.64
(140.492)

50, 4317.22
(310.298)

30 37, 48931.5
(0.025)

42, 18298.21
(130.34)

44, 7364.32
(223.83)

42, 8367.86
(450.12)

46, 3473.50
(346.22)

38, 13296.46
(674.25)

45 24, 172228.73
(6473.45)

45, 84712.34
(2552.34)

41, 36523.46
(2326.74)

39, 74782.63
(6638.93)

43, 17832.65
(1423.45)

32, 23876.65
(7731.63)

60 8, 454563.25
(7653.44)

10, 676278.60
(10183.23)

31, 337822.63
(7198.45)

25, 167322.43
(0.4291)

36, 88934.50
(4512.46)

32, 72874.34
(6722.91)

f2

15 0 0 1, 48585 10, 47483.50
(2561.67)

4, 16374.50
(6231.59)

0

30 1, 93723 0 2, 76874.5
(9324.76)

4, 77563.75
(558.34)

7, 87539.57
(4648.33)

1, 80348

45 0 0 0 1, 127687 0 0
60 0 0 0 1, 363727 0 0

f3

15 0 0 24, 17474.25
(2327.58)

23, 28731
(7583.73)

20, 33928.25
(5753.83)

13, 19823.56
(4100.67)

30 0 0 4, 73483.50
(11142.76)

0 16, 74722.52
(3432.67)

5, 57382.60
(3423.73)

45 0 0 1, 372833 0 9, 175834.67
(3342.76)

1, 46736.83

60 0 0 0 0 5, 478237.20
(22938.26)

0

f4

15 0 18, 37583.67
(7432.82)

16, 41029.75
(3732.68)

6, 14784.33
(4838.37)

28, 26473.05
(3425.69)

20, 29280.46
(4463.27)

30 0 10, 75834.80
(4877.89)

6, 85734.46
(4000.03)

9, 81634.46
(4637.83)

24, 75834.46
(4637.83)

23, 78583.37
(10093.35)

45 0 7, 292643.54
(2281.45)

4, 394852.75
(33621.38)

6, 475832.65
(1343.73)

22, 137474.73
(4473.26)

14, 302934.57
(5548.38)

60 0 0 1, 543736 0 14, 476375.43
(8636.55)

10, 367482.60
(2386.43)

f5

15 0 27, 38232.57
(4537.54)

46, 18473.62
(2276.83)

35, 27484.78
(7473.56)

23, 23789.67
(4839.57)

15, 24837.45
(4739.78)

30 0 23, 74623.45
(3336.32)

24, 73832.68
(10298.56)

16, 84737.68
(4451.27)

27, 54672.22
(6748.46)

29, 84733.57
(3034.92)

45 0 0.9782
(0.2029)

18, 264723.57
(46.223)

12, 472631.67
(4948.68)

20, 302862.60
(13741.34)

17, 383721.47
(17356.05)

60 0 0 1, 634637 2, 737620.50
(3442.33)

4, 607232.25
(34812.67)

0

f6

15 43, 6378.46
(394.35)

50, 16478.84
(425.32)

50, 33623.46
(364.38)

50, 46354.44
(2257.27)

50, 10923.56
(3364.29)

50, 22635.80
(1214.23)

30 23, 84747.45
(3476.48)

16, 79534.32
(7904.52)

50, 68794.24
(6068.45)

39, 64726.32
(9830.51)

50, 63778.40
(2385.31)

50, 64532.64
(9336.46)

45 0 0 34, 265732.58
(14527.35)

25, 748237.40
(4752.87)

42, 205472.02
(8109.56)

40, 284938.64
(7573.24)

60 0 0 20, 684723.80
(13427.46)

0 34, 475978.73
(5741.27)

26, 584032.51
(4535.34)

f7

15 34, 27243.44
(447.03)

32, 29583.49
(341.57)

50, 17263.92
(832.45)

31, 48374.34
(227.48)

50, 16279.52
(723.47)

43, 17563.46
(519.46)

30 24, 64534.69
(4724.56)

30, 69203.67
(7311.46)

18, 73945.57
(3427.47)

27, 74932.33
(4825.45)

40, 78473.50
(3412.67)

37, 64722.59
(5174.38)

45 0 0 0 23, 126377.65
(7106.74)

34, 192935.37
(3691.62)

25, 328372.63
(7148.42)

60 0 0 0 0 12, 542536.73
(2353.19)

8, 632372.35
(12305.37)

f8 2 38, 32928.14
(4118.982)

23, 26843.92
(6323.372)

50, 30272.74
(3642.289)

50, 19823.70
(4249.392)

44, 20354.77
(326.84)

50, 12928.50
(15.749)

f9 2 46, 25374.87
(2643.839)

40, 31928.70
(1434.327)

50, 28372.74
(325.673)

50, 66290.80
(7553.388)

26, 87812.83
(409.54)

50, 24883.78
(3172.827)

f10 2 35, 139584.44
(2563.378)

30, 347285.80
(3382.229)

42, 129372.87
(8742.093)

50, 126574.64
(6833.189)

40, 578732.05,
(3884.94)

50, 50039.60
(481.278)
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TABLE VII

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 RUNS OF SIX ALGORITHMS ON THE FREQUENCY MODULATOR

SYNTHESIS DESIGN PROBLEM. EACH ALGORITHM WAS RUN FOR 106FES

Mean best-of-run solution (std. deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

2.74849
(0.8314)

0.76535
(0.1154)

0.0154
(0.00264)

0.75932
(0.2735)

0.00365
(0.000851)

0.00451
(0.00163)

TABLE VIII

NO. OF SUCCESSFUL RUNS, MEAN NUMBER OF FES AND STANDARD DEVIATION (IN PARANTHESIS) REQUIRED TO CONVERGE TO THE THRESHOLD

FITNESS OVER THE SUCCESSFUL RUNS FOR THE FREQUENCY MODULATOR SYNTHESIS DESIGN PROBLEM

No. of runs converging to the predefined objective function value, mean no. of FEs required, and (standard deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

0 6, 579534.32
(7904.52)

29, 868794.24
(63068.45)

23, 864726.32
(12830.51)

42, 113778.40
(9385.31)

36, 164532.64
(9336.46)
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Fig. 15. Progress toward the optimum solution for the frequency modulator
synthesis problem.
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Fig. 16. Actual target sound and the waveform synthesized by ABFOA1.

the target sound and synthesized sounds are used to compute
the fitness value. The process repeats until synthesized sounds
become very similar to the target.

The specific instance of the problem discussed here
involves determination of six real parameters �X =
{a1, ω1, a2, ω2, a3, ω3} of the FM sound wave given by (32)
for approximating it to the sound wave given in (34) where
θ = 2π

/
100. The parameters are defined in the range [−6.4,

+6.35]

y(t) = a1.sin(ω1.t.θ + a2.sin(ω2.t.θ + a3.sin(ω3.t.θ))) (33)

FM Synthesizer
Bacterium

Target
Sound Fitness

Estimated
Waveform

ABFOA Core

Feature Extraction/
Comparison

Fig. 17. Architecture of the optimization system.

y0(t) = 1.0.sin(5.0.t.θ − 1.5.sin(4.8.t.θ + 2.0.sin(4.9.t.θ))).
(34)

The goal is to minimize the sum of square errors given by
(35). This problem is a highly complex multimodal function
having strong epistasis (interrelation among the variables),
with the optimum value 0.0

f ( �X) =
100∑
t=0

(y(t)− y0(t))
2. (35)

Due to the high difficulty of solving this problem with
high accuracy without specific operators for continuous opti-
mization (like gradual GAs [31]), we terminate the algorithm
when either the error falls below 0.001 or the number of FEs
exceed 106. Like the previous experiments, here also each run
of the classical BFOA, ABFOA1, and ABFOA2 start with the
same initial population.

In Table VII, we indicate the mean and the standard
deviation (within parentheses) of the best-of-run values for
50 independent runs of each of the six algorithms over the
FM synthesizer problem. The t-test performed on the data
of Table VII indicates that the final mean accuracy of both
the adaptive variants differ from their nearest competitor EA
in a statistically significant fashion within 95% confidence
interval. Table VIII shows, for all algorithms, the number
of runs (out of 50) that managed to find the optimum at
or below 0.001 without exceeding the maximum number of
FEs. The table also reports the average number of FEs taken
to reach the optima along with the standard deviation (in
parentheses). Fig. 16 shows the convergence characteristics of
six algorithms in terms of the objective function value versus
number of FEs in their median run. Finally, in Fig. 17 we show

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 13, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



938 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

J(θ)

J(θ2)

θ1 θ2 θ

J(θ1)

δ1

δ2

G2 = tanδ1

G1 = tanδ1

Fig. 18. Two-bacterium system on a 1-D fitness landscape.

the target waveform and synthesized waveform by ABFOA1,
which yields the closest approximation of the target wave.

Tables VII and VIII and Fig. 16 indicate the superior
performance of ABFOA1 over all its contestant algorithms in
terms of final accuracy, convergence speed, and robustness.
Fig. 17 shows that the waveform estimated by ABFOA1
achieves a high level of correspondence with the actual FM
sound wave.

VIII. CONCLUSION

This paper has presented a simple mathematical analysis
of the computational chemotaxis used in the BFOA. It also
proposed simple schemes to adapt the chemotactic step size
in BFOA with a view to improving its convergence behavior
without imposing additional requirements in terms of the
number of FEs. It has analytically been shown that the
proposed adaptation schemes can avoid the oscillation around
the optima or the stagnation near optima for a 1-D bacterium
cell. The classical BFOA was compared with the adaptive
BFOAs and a few other well-known evolutionary and swarm-
based algorithms over a test bed of 10 well-known numerical
benchmarks. The following performance metrics were used: 1)
solution quality; 2) speed of convergence; and 3) frequency of
hitting the optimum. The adaptive BFO variants were shown
to provide better results than their classical counterpart for
all of the tested problems. Moreover, the adaptive schemes
outperformed a state-of-the-art variant of PSO, a standard real-
coded GA, and a hybrid algorithm based on PSO and BFOA
in a statistically meaningful fashion.

Although the adaptive schemes yielded superior results
in the majority of the test cases, we must remember that
this paper does not primarily aim at proposing a series of
improved BFOA variants. Rather, it tries to understand how
the chemotactic operator contributes to the search mechanism
of BFOA, from a mathematical point of view. We believe that
the performance of the competitor algorithms may also be
enhanced with judicious parameter tuning, which renders itself
to further research with them. However, the only conclusion
we can draw at this point is that the adaptive chemotactic
operators have an edge over the classical chemotaxis, espe-
cially in context to the convergence behavior of the algorithm
very near the optima. This fact has been supported here both
analytically and experimentally.

Future research may focus on extending the analysis pre-
sented in this paper to a group of bacteria working on a
multidimensional fitness landscape and also include effect of
the reproduction and elimination–dispersal events in the same.
Other adaptation schemes of the chemotactic step size may
also be investigated as well.

APPENDIX

Here, we are interested in the grouped behavior of two
bacteria. Cost function value for each bacterium is modified
if we consider mutual signaling between two bacteria. Let, θ1
and θ2 be the θ coordinates of two bacteria placed within the
1-D search space. J (θ1) and J (θ2) are the corresponding cost
functions for their current positions as shown in Fig. 18. Let
us also assume that V1 and V2 represent their velocities. After
modifying cost function (J ) by adding a cell-to-cell signaling
function (Jcc), it becomes J ′ (say), where

∴ J ′(θ1) = J (θ1)+ Jcc and J ′(θ2) = J (θ2)+ Jcc

and

Jcc = −daexp{−ωa(θ2 − θ1)
2}

+ hr exp{−ωr (θ2 − θ1)
2} [from (2)]

where ωa and ωr stand for ωattractant and ωrepellant, re-
spectively, and da and hr represent dattractant and hrepellant,
respectively

⇒ Jcc = −h[exp{−ωa(θ2 − θ1)
2}

− exp{−ωr (θ2 − θ1)
2}][∵ da = hr = h(say)]

From the above expressions, we can infer that
1) J ′(θ1), which is the modified cost function value for

bacterium at θ1, depends on θ1 as well as on θ2. In other
words, the modified cost function for a particular bacterium
may change even if it remains standstill, given that the other
bacterium changes its position.

2) The cell-to-cell signal phenomenon can affect only
the local search in BFOA. To illustrate this, let us assume
|θ2−θ1| >> 1, i.e., and a large distance separates two bacteria.

As exp{−ωa(θ2 − θ1)
2} → 0, exp{−ωr (θ2 − θ1)

2} → 0, we
may have Jcc → 0. It is clear that when the two bacteria are
far away from each other, cell-to-cell signaling effect becomes
feeble and the situation resembles that for a single bacterium
system discussed earlier. Similar to one bacterium system, here
we assume fitness landscape to be flat in the region of interest.

Analysis:
Similar to the one-bacterium system, the unit step function

is used to model chemotaxis in this case

⇒ �θ1

�t
= u

[
− J ′(θ1 +�θ1)− J ′(θ1)

�t

]
.C.�.

θ1 and θ2 are functions of t . When t changes, θ1 and θ2
change, causing J ′(θ1) to change. Thus when �t → 0, the
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above relation becomes

V1 = dθ1

dt
= u

[
−d J ′(θ1)

dt

]
.C.�. (36)

V1 = dθ1

dt
= u

[
−d J ′(θ1)

dt

]
.C.�.

Similarly,

V2 = dθ2

dt
= u

[
−d J ′(θ2)

dt

]
.C.�. (37)

Already we have shown that J ′(θ1) depends on both of θ1
and θ2. Again, θ1 and θ2 depend on time. Applying the rule
of total derivatives, we get

d J ′(θ1)

dt
= ∂ J ′(θ1)

∂θ1

dθ1

dt
+ ∂ J ′(θ1)

∂θ2

dθ2

dt
. (38)

Substituting the value of J ′(θ1) in (38), performing partial
differentiation, and letting ψ = 2h(θ2 − θ1)[ωaexp{−ωa(θ2 −
θ1)

2} − ωr exp{−ωr (θ2 − θ1)
2}], finally we get

d J ′(θ1)

dt
=

(
d J (θ1)

dθ1
− ψ

)
dθ1

dt
+ ψ

dθ2

dt

⇒ d J ′(θ1)

dt
= (G1 − ψ)V1 + ψV2. (39)

Similarly, we can show that

d J ′(θ2)

dt
= (G2 + ψ)V2 − ψV1 (40)

where G1 = (d J (θ1))/(dθ1) and G2 = (d J (θ2))/(dθ2).
We assumed |θ2 − θ1| << 1, so neglecting higher order

terms in expansion of e−x , we get

ψ ≈ 2h(θ2 − θ1)(ωa − ωr )[1 − (ωa + ωr )(θ2 − θ1)
2]. (41)

ψ,G1,G2, V1, V2 are small. Hence, (d J ′(θ1))/(dt) and
(d J ′(θ2))/(dt) are small. So, unit step function in (36) and
(37) can be modeled using the relation u(x) ≈ (k/4)x + (1/2)

Thus,

V1 = dθ1

dt
= u

[
−d J ′(θ1)

dt

]
C� ≈

[
−k

4

d J ′(θ1)

dt
+ 1

2

]
× C� (42)

and

V2 = dθ2

dt
= u

[
−d J ′(θ2)

dt

]
C� ≈

[
−k

4

d J ′(θ2)

dt
+ 1

2

]
× C�. (43)

Substituting the values of (d J ′(θ1))/(dt) and
(d J ′(θ2))/(dt) from (39) and (40) to (42) and (43),
respectively

[4 + kC�(G1 − ψ)]V1 + kC�ψV2 = 2C� (44)

and
[4 + kC�(G2 + ψ)]V2 − kC�ψV1 = 2C�. (45)

The above equations show that velocities of two bacteria
are coupled. We solve for V1 from (44) and (45)

V1 = 8C�+ 2kC2�2G2

16 + k2C2�2{G1G2 + ψ(G1 − G2)} + 4kC�(G1 + G2)

for �2 = 1[∵ � = 1or� = −1], and neglecting product of
gradients

V1 ≈
C�

2 + kC2

8 G2

1 + k2C2

16 ψ(G1 − G2)+ kC�
4 (G1 + G2)

.

(Now, in the denominator 1 is much larger than remaining
terms. So, we use approximate relation, (1)/(1 + x) ≈ 1 − x
for simplification.)

V1 ≈ C�

2
− kC2

8
G1 − k�

32
[kψ(G1 − G2)

+G2(G1 + G2)]C
3 − k3ψ

128
G2(G1 − G2)C

4. (46)

It is general equation for the two-bacteria system. A careful
inspection of (45) reveals that

1) V1 = a0C + a1C2 + a2C3 + a3C4 where, ai =
f (G1,G2, θ2, θ1,�, ωa, ωr , h, k), i.e., the velocity can be
expressed as a polynomial of step size.

2) C is very small. So, last two terms on the RHS of (46)
have lesser contributions. We conclude that first two terms
dominate the relation, i.e., V1 ≈ (C�/2)−((kC2)/8)G1. This
is the equation obtained for single-bacterium system.

3) When kψ(G1 −G2) >> G2(G1 +G2), we neglect latter
as a coefficient of C3.

Also, substituting ψ = 2h(θ2−θ1)[ωaexp{−ωa(θ2−θ1)
2}−

ωr exp{−ωr (θ2 − θ1)
2}], we get

V1 ≈ −kC2

8
G1 + C.�

2
+ τ(θ2 − θ1) (47)

where τ = f (G1,G2,C, θ2, θ1,�, ωa, ωr , h, k). It has a very
complicated form, but its magnitude is small. Expression
(46) reveals an interesting feature of the two-bacteria system.
The first two terms on the RHS are exactly similar to those
of the one-bacterium system described by (12). But the
third term, i.e., τ(θ2 − θ1), shows swarming effect. This
term is introduced due to the effect of other bacterium in
its dynamics, although its magnitude is considerably smaller
than the first two terms in (47).
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