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Abstract
Multi-objective particle swarm optimization algorithms (MOPS) are used successfully to solve real-life optimization

problems. The multi-objective algorithms based on particle swarm optimization (PSO) have seen various adaptations to

improve convergence to the true Pareto-optimal front and well-diverse non-dominated solution. In some cases, the values

of the MOPS control parameters need to be fine-tuned while solving a specific multi-objective optimization problem. It is

challenge to correctly fine-tune the value of the PSO control parameters when the true non-dominated solutions are not

known as in case of a real-life optimization problem. To address this challenge, a multi-objective particle swarm opti-

mization algorithm that uses constant PSO control parameters was developed. The new algorithm called NF-MOPSO is

capable of solving different multi-objective optimization problems without the need of fine-tuning the value of the PSO

control parameters. The NF-MOPSO enhances the convergence to the true Pareto-optimal front and improves the diversity

of Pareto-optimal using the same fixed values for all the PSO control parameters. The NF-MOPSO uses constant values of

the PSO control parameters such as acceleration coefficients c1 and c2, and inertia weight x. A Gaussian mutation is

applied to the position of particles to increase diversity while a penalty function is used as constraint mechanism. The

algorithm has been tested on 45 well-known benchmark test functions using four performance metrics. The test results

demonstrate the capability of the NF-MOPSO to solve different multi-objective optimization problems using the same

value of the PSO control parameters. The capability of the NF-MOPSO was demonstrated in real-life optimization problem

by solving a multi-objective optimization problem of a neutron radiography collimator. The results of collimator opti-

mization showed that the optimizer was able to provide a set of Pareto optimal solutions from which the geometrical design

parameters of a collimator could be retrieved for given application.
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1 Introduction

Optimization involves making decision about what out-

come is ‘‘best’’ among all sets of available outcomes.

When the ‘‘best’’ outcome must satisfy multiple objectives

or criteria and those criteria are in conflict with each other,

the problem is referred to as a multi-objective optimization

problem (MOOP) [1, 2]. A MOOP normally has a set of

solutions, and it is difficult to determine if one solution is

better than the other, and therefore, the MOOP is solved by

finding the trade-off solutions that balance the conflicting

objectives [3]. The trade-off solutions form the Pareto-

optimal front.

Multi-objective particle swarm optimization (MOPS)

algorithms are being used in solving real-life MOOP [4–6];

hence, there is a need to improve the performance of a

MOPS. The performance of a MOPS is measured based on

key performance indicators such as good convergence of

non-dominated solutions to the true Pareto-optimal front,

and well-diversed Pareto-optimal front. The performance

of the MOPS can be affected by the PSO control param-

eters such as acceleration coefficients c1 and c2, and inertia

weight x [7–9]. It has also been demonstrated that the

values of the PSO control parameters are problem depen-

dant [10]. Consequently, the values of the PSO control

parameters may need to be fine-tuned to improve the per-

formance of a MOPS for each MOOP. In ideal case, the

values of the PSO control parameters are fine-tuned for a

MOPS in which the true Pareto-optimal front is known as

in case of test functions used in MOOP. There is no

guarantee that the same values of the PSO control param-

eters will work for a different MOOP. This creates a

challenge when solving a real-life MOOP in which the true

Pareto-optimal front is not known [6]. Researchers have

stated a need to find a MOPS in which the control

parameters are not problem-dependent [2, 6, 10–13]. Cur-

rently, the use of values of the PSO control parameters that

satisfy theoretically derived convergence conditions are

used for the performance of PSO algorithm [6, 14, 15].

Other techniques such as hybridization of MOPS [16, 17],

decomposition of MOPS [18–20], fuzzy clustering [21]

have recently been used to improve the performance of

MOPS. For a single-objective optimization, recent attempt

has been made to create a nonparametric particle swarm

optimization for global optimization [22]. In this paper, an

attempt is made to create a multi-objective particle swarm

algorithm called NF-MOPSO that uses the same constant

values of the PSO control parameters to solve different

MOOP.

The remainder of this paper is organized as follows.

Section 2 introduces the basic technique used in particle

swarm optimization. In Sect. 3, the proposed algorithm is

discussed. In Sect. 4, the capability of NF-MOPSO to solve

different test functions is demonstrated. The results of the

tests and the comparison of the NF-MOPSO with other

state of the art MOPS are discussed in Sect. 5. In Sect. 6,

the capability of NF-MOPSO in solving a real-life opti-

mization problem is demonstrated. Finally, the conclusion

and future work are presented in Sect. 7.

2 Particle swarm optimization

2.1 Particle swarm optimization technique

PSO is a population-based optimization approach based on

swarm intelligence that was first introduced by Kennedy

and Eberhart in 1995 [23]. PSO was inspired by innovative

distributed intelligence paradigm observed in a social

behavior of a flock of birds. Since its development, PSO

has become one of the popular optimization techniques for

solving complex optimization problems [6]. PSO finds the

solutions to the optimization problem by using the popu-

lation of the swarm. A population of the swarm moves

around in the search space searching for the optimal

solutions. A member of a population is called a particle. A

position occupied by each particle in the search space

represents a candidate solution to the optimization prob-

lem. While moving to a new position (candidate solution),

an efficient collaboration among particles is required to

obtain good convergence to the best solutions. Thus each

particle is guided by the cognitive and the social learning

experience while moving to the new position [24, 25].

Therefore, the velocity of the particle is the carrier of the

cognitive and the social learning experienced. The move-

ments of the particles in collaboration will eventually lead

the particle to converge to the best solutions.

In PSO, a multi-objective problem with n number of

objectives and m number of decision variables is repre-

sented by an objective vector function f~ x~�ð Þ ¼
f1 x~�ð Þ; f2 x~�ð Þ; . . .; fn x~�ð Þð Þ and a decision vector

x~� ¼ x�1; x
�
2; . . .; x

�
m

� �
.

The position of the particles is updated during the search

at each time step t by adding the velocities of the particles

as

xai t þ 1ð Þ ¼ u tð Þxai tð Þ þ vai t þ 1ð Þ ð1Þ

where xai is the position of the particle a for i decision

variable, and u is the mutation operator acting on particle a

for i decision variable, and vai is the velocity of the particle

a for i decision variable. During the search of the optimal

solution, the velocity of each particle in the swarm is

updated using

vai t þ 1ð Þ ¼ xvai tð Þ þ C�comp þ S�comp ð2Þ
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and

C�comp ¼ ra1i tð Þc1 xyi tð Þ � xai tð Þ
� �

ð3Þ

and

S�comp ¼ þra2i tð Þc2 x̂yi tð Þ � xai tð Þ
� �

ð4Þ

where C�comp is the cognitive component, S�comp is the

social component, x is the inertia weight, r1i and r2i are

random values in 0; 1½ � for the particle a for i decision

variable, c1 and c2 are acceleration coefficients, xyi is the

local guide for particle a for i decision variable, and x̂yi tð Þ is
the global guide for all particles for i decision variable.

2.2 Effect of control parameters

The performance of PSO depends on different factors that

balance the trade-off between the exploration and

exploitation of the swarm in the search space. The

important issue in PSO is that those factors are problem-

dependent. The settings of those factors may perform well

for some optimization problems and fail miserably for

others. The challenge is to find the optima settings of those

factors for a real-life optimization problem. Alongside the

PSO control parameters, other main factors that may affect

the performance of PSO are the number of particles in the

swarm [26, 27], the number of iterations [28, 29], the

neighborhood topology [30], and the mutation operator

[31, 32]. The effect of the PSO control parameters are

discussed below:

2.2.1 Acceleration coefficients

The acceleration coefficients drive efficiency of the PSO

algorithm [33]. The ratio between c1 and c2 influences the

behavior of the swarm towards the personal best or the

neighborhood best as follows:

• For c1 ¼ c2 ¼ 0 and x ¼ 1, the velocities of the

particles are constant which make the particles to keep

on flying until they hit a boundary of the search space.

• For c1 [ 0 and c2 ¼ 0, there is no exchange of

information between the particles, and hence the

particles perform a local search.

• For c1 ¼ 0 and c2 [ 0, the particles do not have

confidence in themselves and are only attracted to the

neighborhood best solution.

• If c1 � c2, the cognitive component is much dominant

than the social component making the particles to be

much more attracted to their personal best solution.

• If c1 � c2, the social component is much dominant than

the cognitive component causing a premature conver-

gence to the solution.

2.2.2 Inertia weight

The inertial weight as PSO control parameter was first

introduced as variant PSO in 1998 three year after the

introduction of the basic PSO algorithm [34]. Since its

introduction, the inertia weight is still used to improve the

performance of PSO in real-life optimization problems

[35, 36]. The inertia weight put its weight on the previous

velocity of the particle, thus controlling the influence the

cognitive and social components had on the previous

velocity. The value of x influences the exploration and

exploitation abilities of the swarm as follows:

• For x� 1 , the velocity is increased at each time step,

particles do not change direction thus missing the

promising local search area when searching for the best

solutions.

• For x\1 , the velocity is decreased at each time step

and may eventually reach zero. The particles are

stagnated in their local search area.

• For a large value of x , the exploration ability of the

particles is encouraged and the diversity in the solutions

is increased.

• For a small value of x , a local exploration by the

particles is encouraged.

• For x 	 0 , the exploration ability of the particles is

eliminated.

2.3 Selection of PSO control parameters

The values assigned to PSO control parameters affect the

performance of the algorithm for a given problem. In PSO,

it is important to find the proper values of c1, c2, and x
when designing a new algorithm to solve a particular

problem. The challenge is to find the best values of c1, c2,

and x that are suitable for a particular optimization prob-

lem. Theoretical analysis studies have been conducted on

PSO to provide guidance on assigning the values of c1, c2,

and x [7, 37, 38]. Other selection mechanisms are guided

by experimental methods such as trial and error, cross-

validation, or self-adapting the values of c1, c2, and x
[10, 39, 40]. The setting of the right parameters of a multi-

objective particle swarm optimizer is not an easy task, and

the use of trial and error is labour-intensive and time

consuming especially for the design real-life optimization

problems [41]. This challenge has made the use of different

values of control parameters to solve a particular problem

using the same algorithm. Guided by theoretical analysis

studies, empirical experiments, or self-adapting methods,

the values assigned to PSO control parameters for any

MOPS have been taken preferably in the range of

x ¼ 0; 1½ �, c1 ¼ 0:2; 2:5½ �, and c2 ¼ 0:2; 2:5½ � [13, 42–52].
The need to find an algorithm that performs well without
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fine-tuning the values of the PSO control parameters and

without adding computation burden to the algorithm is

desirable as stated in [53].

The MOPS uses customized different the values of the

PSO control parameters obtained using theoretically anal-

ysis or empirically after numerous experiments. In some

cases, different values are used for different test functions

making each values of PSO control parameter to be tailored

to a particular test functions. The MOPS that uses self-

adapting methods could not provide good performance for

all the tests conducted [41, 50, 51, 54–56]. In this paper, an

attempt is made to design a MOPS that uses constant

values for x; c1and c2 and perform competitively with the

currently MOPS while maintening simplicity and effi-

ciency of PSO.

3 The proposed algorithm

The NF-MOPSO is based on Coello Coello and Lechuga

MOPSO algorithm [13]. The main differences between the

NF-MOPSO and the MOPSO are the use of a Gaussian

function as a mutation operator and the introduction of the

PSO control parameters c1 and c2. The constant values

used in the NF-MOPSO, c1 ¼ c2 ¼ 1:4 for the acceleration

coefficients and x ¼ 0:7 for the inertia weight are known

to guarantee the convergence of the particles [7, 37]. The

algorithm is presented in ‘‘Appendix 1’’.

A concept of ‘‘domination’’ [3, 57] is used to find Pareto

optimal solutions. Assuming minimization a decision

vector x~a is said to dominate x~b (denoted x~a 
 x~b) if and

only if fk x~að Þ� fk x~b
� �

; 8k ¼ 1; . . .; q and

9k ¼ 1; . . .; q : fk x~að Þ\fk x~b
� �

, and decision vector x~a is

said to weakly dominate x~b (denoted x~a
4x~b) if and only if

fk x~að Þ� fk x~b
� �

; 8k ¼ 1; . . .; q. A solution found by a par-

ticle in a search space can be either classified as a ‘‘dom-

inated solution’’ or a ‘‘nondominated solution.’’ A

dominated solution is a solution whose one or more

objectives can be improved without causing damage to

others objectives in the same solution. A non-dominated

solution is a solution whose objectives cannot be improved

without degrading other objectives. A Pareto optimum

solution is a nondominated solution. The Pareto-optimal

solutions form part of the Pareto front, and they are the

ideal solutions to a MOOP. A Pareto-optimal front is

reached when there is no more possible good compromise

between conflicted objectives.

3.1 Gaussian mutation operator

A Gaussian mutation operator described in Eq. (5) is uses

in NF-MOPSO to improve diversity in the optimal

solutions.

ua
i tð Þ ¼ mG þ drið Þ ð5Þ

and

ri tð Þ ¼ xmax;i � xmin;i

� �
e�t ð6Þ

where ua
i is the Gaussian mutation operator of a particle a

for i decision variable, mG ¼ 0 is the Gaussian mean, d is a

random value in 0; 1½ � taken from a Gaussian distribution

with 0 as mean and 1 as a standard deviation, and ri is the
standard deviation of the Gaussian mutation operator for i

decision variable. The value ua
i is gradually decreased at

each step time, and the threshold probability Pua
i
of not

using ua
i for i decision variable is increased at each time

step following Eq. (7).

Pua
i
tð Þ ¼ t

tmax

ð7Þ

with tmax as the maximum time step.

ua
i modifies randomly the position of the particle at each

time step. The mutation is used on a particle if and only if

the randomly generated probability Pxai
2 0; 1Þ½ of a parti-

cle a for i decision variable is �Pua
i
. Thus at each time

step, the position of the particles is updated following the

rule in Eq. (8).

xai t þ 1ð Þ ¼ xai tð Þ þ vai t þ 1ð Þ if Pxai
tð Þ\Pua

i
tð Þ

ua
i tð Þxai tð Þ þ vai t þ 1ð Þ if Pxai

tð Þ�Pua
i
tð Þ

�

ð8Þ

3.2 Constraint handling

The NF-MOPSO uses the death penalty [58] as constraint

handling mechanisms. The death penalty makes the search

for the optimum solutions to be performed only in the

feasible regions. The death penalty method is applied

during the initialization of the particle position and during

the update of the position of particles. During initialization,

the randomly generated position of a particle is retained if

and only if it satisfies all the constraint conditions. The

creation of new particles continues until the number of

desirable particles is reached and all the particles satisfy all

the constraint conditions. During the update of the position

of the particle, the following penaly function defined in

Eq. (9) is applied.
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xai t þ 1ð Þ ¼ xai t þ 1ð Þ if constraint satisfied

random xLi; xUið Þ while constraint not satisfied

�

ð9Þ

where xLi is the lower bound for i decision variable, and xUi
is the upper bound of for i decision variable.

The new position of the particle is retained only if it

satifies the objective constraint conditions; otherwise, a

new position of the particle is randomly generated until a

position that satifies the objective constraint is found. The

new position of the particle is generated within the

boundary of the search space to satisfy the boundary con-

straint as well. It is important to note that the initial number

of particles involved in the optimization process is not

reduced, particles are only assigned new position if their

updated positions do not satify the constraint condition.

The penalty function in Eq. (9) allows only the feasible

particles to be evaluated for dominance and also to be store

in the external archive.

3.3 External archive

The NF-MOPSO uses an external archive to store the

nondominated solutions found so far by the particles. The

update of the external archive is based on the rules defined

in Coello Coello and Lechuga’s MOPSO. The non-domi-

nated solutions are grouped together in the external

archive, based on the values of their objectives. A hyper-

cube is used to arrange the storage of the non-dominated

solutions in the external archive. The NF-MOPSO does not

use an adaptive grid as in MOPSO, instead a fixed size is

used for the grid. The size of the grid depends on the range

of the feasible objective space in each dimension. Prior

information about the objectives space is required. The

index Hk (storage location) for each non-dominated solu-

tion in the hypercubes is calculated using Eq. (10).

Hk ¼
Sk
Uk

ð10Þ

where Sk is the value of the non-dominated solution for the

k objective function, and Uk is the grid unit size calculated

based on the maximum range in the solution space of k

objective function as

Uk ¼
Rk

Ng
ð11Þ

where Rk is the maximum range in the solution space of k

objective function, and Ng ¼ 30 is the number of grid in

the hypercubes.

3.4 Local guide and global guide

The local guide of the particle represented by decision

vector x~y, is chosen among the next position of the particle

or the current local guide using the Pareto-dominance in

Eq. (12).

x~y t þ 1ð Þ ¼
x~y tð Þ if x~y tð Þ 
 x~a t þ 1ð Þ
x~a t þ 1ð Þ if x~a t þ 1ð Þ 
 x~y tð Þ
x~a t þ 1ð Þ or x~y tð Þ if x~a t þ 1ð Þ4x~y tð Þ

8
<

:

ð12Þ

The new position of a particle is given 50% chance of

being selected as a local guide if neither the new position

or the current local guide dominate each other. The global

guide particle is selected from the nondominated solutions

in the external archive. In order to obtain a well distributed

Pareto-optimal front, the global guide is selected from the

less dense hypercube (contains less number of solutions). A

roulette wheel is applied to all the hypercubes to select the

less dense hypercube. The selection starts by calculating

the probability Ph a hypercube has, as a provider of a

global guide given in equation

Ph ¼
ah
nh

ð13Þ

where ah ¼ 10 is the hypercube density factor, nh is the

current number of non-dominated solutions in the hyper-

cube. The hypercube is selected if

Ph � Tv ð14Þ

and

Tv ¼ rhah ð15Þ

where Tv 2 0; ahÞ½ is the selection threshold value, and rh 2
0; 1Þ½ is the generated random value. At each time step, a

1000 draws are performed, and then the hypercube with the

highest number of selections after the 1000 trials is selec-

ted. The global guide is chosen randomly from non-dom-

inated solutions stored at the selected hypercube. The local

best of the selected solution becomes the global guide of

the swarm.

4 Test and results

The performance of a MOOP is measured using mathe-

matical benchmark test functions [59] and evaluated using

performance metrics [60–62]. The benchmarking of the

NF-MOPSO was done using 45 well-known constraint and

unconstraint multi-objective test functions. The test func-

tions used to evaluate the performance of NF-MOPSO falls

into one or more of the following categories: unconstraint,

constraint, two objectives, or three objectives test
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functions. The test functions include among others, the

MOP test suite [63], the ZDT test suite [64], and the DTLZ

test suite [65]. The test functions cover a long range of

scenarios encountered in real-life optimization problem

such as convex, nonconvex, continuous, discontinuous, and

discrete Pareto-optimal fronts. Other scenarios covered in

the test are deception, collateral noise, and bias search

space. The number of decision variables used in the per-

formance test varies from 2 and 30 decision variables.

The results of the test were evaluated both graphically

and numerically. Four performance metric indicators

namely the generational distance (GD), the inverted gen-

erational distance (IGD), the spacing (S), and the error ratio

(ER) were used in numerically evaluation of the NF-

MOPSO.

4.1 Performance metrics

Performance metrics are quality indicators that provide a

quantitative evaluation of a MOOP performance [60]. The

perfomance metrics measure the accuracy and diversity in

the solutions find by the MOOP and also make it possible

for a new MOOP to be tested for strengths and weakness

with comparison to existing MOOP [66]. Hence, more than

one metric is needed to evaluate the overall performance of

the MOOP [64, 67]. The NF-MOPSO was evaluated

quantitatively using four performance metric indicators.

The performance metrics used to evaluate NF-MOPSO are

described below:

The GD metric [68] presented in Eq. (16) measures how

far, on average, the Pareto-optimal front produced by the

algorithm is to the true Pareto-optimal front. A small value

of GD indicates a good performance.

GD ¼
P Aj j

q¼1 d
p
q

� �1
p

Aj j ð16Þ

where A is the number of solutions in the Pareto-optimal

front produced by the algorithm, p ¼ 2, dq is the minimum

Euclidean distance between the qth solution from A and the

nearest solution in the true Pareto-optimal front.

The IGD metric [69] shown in Eq. (17) measures how

far, on average distance, the true Pareto-optimal front is to

the Pareto-optimal front produced by the algorithm. The

IGD is the inverse of the GD. The IDG metric measures

both the convergence and the spread of the Pareto-optimal

front produced by the algorithm [16]. A small value of IGD

indicates good performance.

IGD ¼
P Tj j

q¼1 d
p
q

� �1
p

Tj j ð17Þ

where IGD is the inverted generational distance, T is the

number of solutions in the true Pareto-optimal front, p ¼ 2,

dq is the minimum Euclidean distance between the qth

solution from T and the nearest solution in the Pareto-

optimal front produced by the algorithm.

The S metric [70] in Eq. (18) provides an indication of

the spread of the Pareto-optimal solutions produced by the

algorithm. The S metric measures the variance of the dis-

tance of each Pareto-optimal solution to its closest neigh-

bor. A small value of S indicates a good performance.

S ¼ 1

Aj j � 1

XAj j

u¼1

d � du
� �2

where d ¼
XAj j

u¼1

du
A
and

du ¼ minj f i1 x~ð Þ � f j1 x~ð Þ
		 		þ f i2 x~ð Þ � f j2 x~ð Þ

		 		� �
; i; j ¼ 1; . . .;A

ð18Þ

where S is the Spacing metric, A is the number of Pareto-

optimal solutions produced by the algorithm, d is the mean

of all du, du is the minimum distance between the uth

solution and all other solutions in the Pareto set.

The ER metric [63] presented in Eq. (19) counts the

number of solutions in the Pareto-optimal front produced

by the algorithm that are not members of the true Pareto-

optimal front. A small value of ER indicates a good per-

formance [61].

ER ¼
P nj j

i¼1 ei
nj j ð19Þ

where ER is the error ratio, n is the number of solutions in

the Pareto-optimal front produced by the algorithm, ei ¼
0 if ith solution from n belongs to the true Pareto-optimal

front, and ei ¼ 1 otherwise.

4.2 Results

A multi-objective optimizer software based on NF-

MOPSO algorithm was implemented using a java pro-

gramming language [71]. Table 1 presents the constant

values of the PSO parameters used in all optimization test.

For each test function, 30 tests runs were done. For each

test function, the results of the evaluation are presented as

the mean, the standard deviation, the minimum, and the

maximum of each performance metric. Table 2 shows the

evaluation test results, and Table 3 shows the summary of

the test results. The test results are presented graphically in

‘‘Appendix 2’’ and ‘‘Appendix 3’’ where the Pareto front

obtained by the NF-MPSO is visualized graphically with

the true Pareto front. The results of the computational time

for each test function are shown in Table 4 for two
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objectives test functions, and in Table 5 for three objectives

test functions.

The mean values presented in Table 2 were compared

with the results from other algorithms namely the MOPSO

[13], the SMOPSO [42], the HTL-MOPSO [16], MMOPSO

[19], the dMOPSO [72], OMOPSO [73], and the EMOPSO

[51]. The best values (smallest mean of GD, IGD, Spacing

or ER) among the compared MOPS are highlighted in

boldface for each test function in the results tables. A

percentage score was used as a comparing factor. The

MOPS was given a percentage score based on the number

of its best values in performance metric indictor. The

percentage scores presented in Tables 6, 7, 8, 9, 10, 11 and

12 indicate the number of time where one algorithm per-

formed better than the other on test functions used in the

comparison.

5 Discussion

The aim of this paper is to develop a competitive no fine-

tuning PSO parameters algorithm for multi-objective

optimization. Based on the results presented in Sect. 4.2,

the following interpretations can be made:

5.1 Performance of NF-MOPSO on test functions

The results of the summary of performance test in Table 3

showed that NF-MOPSO has good average performance on

all the 45 test functions used in the evaluation. The per-

formance of the NF-MOPSO was achieved using the same

value the PSO control parameters on all test functions. For

180 evaluations shown in Table 2, 93% have a performance

value less or equal to 0.1. Graphical analysis of the test

results in ‘‘Appendix 2’’ and ‘‘Appendix 3’’ confirmed the

results in Table 2, and shows that the NF-MOPSO was able

to find the theoretical true Pareto-optimal front and Pareto-

optimal solutions of all the test functions used in the

investigation. There is no single test function on which the

NF-MOPSO performed worse on all performance metrics

used in the test. The comparison test shown in Tables 6, 7,

8, 9, 10, 11, and 12 showed that the NF-MOPSO performed

equally or better than other the recently improved

algorithms.

The existence of many local Pareto fronts in the ZDT4

test function has made other algorithms to perform poorly

and not finding the true Pareto front [16, 74, 75]. It has

been reported in [76] and in [49] that MOPSO failed to find

a true Pareto front for ZDT4. The improved MOPSO called

OMOPSO also failed to find the true Pareto front for ZDT4

as reported in [74, 76] and in [19, 77], where the OMOPSO

scored mean value of 4.44 for GD, 0.1 for IGD, 0.08 for

Spacing, and 0.1 for ER. Other MOPS that were reported to

fail to find the true Pareto front for ZDT4, are TV-MOPSO

[16], DDMOPSO [19], and EMOPSO, with the means

score value of 5.19, 1.66, and 8.11 for IGD, respectively.

The NF-MOPSO performed well on ZDT4 test function

based on the evaluation test results of a mean value of

0.008 for GD, 0.01 for IGD, 0.02 for Spacing, and 0.09 for

ER. The plot in Fig. 1 confirms the good performance of

the NF-MOPSO by showing that the true Pareto front of

ZDT4 was found.

The frequently used values for c1, c2, and x in literature

may not guarantee a better performance for most the test

function; and the use of fixed values for PSO parameters

did not yield good results in the past [51, 73]. In case of

NF-MOPSO, the values of the PSO control parameters

performed well on all the 45 test functions evaluated. The

good performance of the no-fine-tuned PSO control

parameters (c1 ¼ c2 ¼ 1:4 and x ¼ 0:7) of NF-MOPSO is

due to the fact that it has been proven both theoretically

and verified empirically that those values derived conver-

gence conditions which guarantee that an equilibrium state

will be reached and particles will converge to a solution

[7, 37]. The use of Gaussian mutation operator that does

not require the fine-tuning of a mutation rate (as it is in the

case of MOPSO) also contributed the good performance of

NF-MOPSO.

The use of randomly generated values of the PSO con-

trol parameters by some MOPS bring the uncertainty in the

performance an algorithm; on the other hand, the use of

empirically derived values for PSO control parameters

recommended by the author may provide poor perfor-

mance. For example the use of values of c1 ¼ c2 ¼ 2:0 and

x ¼ 0:4 as suggested by Coello Coello for MOPSO, gen-

erated few solutions for ZDT4 as reported in [49]. The

weakness of the original MOPSO has been observed in

finding uniform a distributed Pareto optimal solutions [13],

hence it has failed to find the Pareto optimal solutions for

ZDT4 [73]. Thus it was recommended to use additional

Table 1 PSO setup parameters used in the test of NF-MOPSO

PSO set up parameter Value

C1 1.4

C2 1.4

x 0.7

Number of particles 100

The size of the external archive 500

Number of time steps 250–5000

Number of hypercubes in the external archive 30

Mean for Gaussian mutation operator 0

Coefficient of the velocity clamping function 1
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techniques such as crowding or fine-tuned parameters to

improve on the performance of MOPSO. The additional

techniques such as a hybrid methods used in HTL-MOPSO,

SMPSO, and MMPSO, compromise the quality of sim-

plicity and implementation of PSO, and bring additional

computational time. The OMOPSO (which is an

improvement of the original MOPSO) uses crowding,

mutation, and e-dominance techniques along with ran-

domly generated values of the PSO control parameters.

Another improvement version of the MOPSO is the

EMOPSO that uses clustering technique and self-adaptive

values for PSO parameters. The results in Tables 7 and 8

shows that the NF-MOPSO outperformed both the

OMOPSO and EMOPSO based on the performance metrics

used in the evaluation. The authors of both OMOPSO and

EMOPSO reported finding it difficult to find fixed values of

PSO parameters using their approach [51].

5.2 Sensitivity of PSO control parameters on NF-
MOPSO

The sensitivity of NF-MOPSO on the values of the PSO

control parameters was tested using 100 sets of values that

were randomly generated in the range of c1 ¼ c2 ¼
0:2; 2:5½ � and x ¼ 0; 1½ �. The range was chosen based on

the reason discussed in Sect. 2.3. The sensitivity of the

values of the PSO control parameters was examined on

ZDT4 test problem as an example of one of the most dif-

ficult multifrontal problems. The results presented in Fig. 2

shows that the performance of NF-MOPSO is sensitive to

the values of the PSO control parameters as expected [51],

different performance mean values (good or bad) were

produced by different sets for different performance

metrics.

The NF-MOPSO uses constant values of PSO parame-

ters that are known to guarantee a convergence to a solu-

tion in order to avoid the ambiguity that are observed when

other values (such as randomly generated values) are used.

The results presented in Table 13 (data colored bold for

mean \ 0:1, italic for 0:1 � mean \ 1 , and bold italics

for mean � 1) shows that in the range of

c1 ¼ c2 ¼ 0:2; 2:5½ �, the set of values closed to c1 ¼ c2 ¼
1:4 have the best performance in all four performance

metrics used in the evaluation.

5.3 Running time of NF-MOPSO

Using an 8-Core Intel CPU with 8 GB RAM, the running

time of NF-MOPSO was on average 3.95 s for two

objectives test functions, and 95 s for three objective test

functions (Tables 4, 5). The best and worst running time

was 0.27 and 44 s, respectively,, for two objectives test

functions; 12.67 and 368.73, respectively, for threeTa
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objectives test functions. The use of the values of PSO

parameters guarantee a convergence to a solution, and by

maintaining the simplicity and easy implementation that

characterizes the original PSO, make the computational

time of NF-MOPSO to be better than some recent MOP

such as DDMOPSO (48.96 s), and also competitive with

recent MOPS such as dMOPSO (2.20 s) and MMOPSO

(2.1 s) for two objectives test functions [19].

The result in Tables 4 and 5 shows that the running time

is proportional to the number of objectives n and the

number of iterations (time step t). The number of objec-

tives is native to the objective function, thus cannot be fine-

tuned. Thus, it is clear that the computational time of NF-

MOSPO on many objective optimization problems (MOOP

with more than three objectives [78, 79]) will increase. The

number of iterations is the only PSO set-up parameter that

is fine-tuned in NF-MOPSO. Thus the optimal number of

iterations is problem-dependent [80], the number of itera-

tions is one of the PSO parameters that can be easily fine-

tuned unlike the PSO control parameters. The rule of

thumbs is that less number of iteration may cause the

search to terminate prematurely [81], and large number of

iterations may improve results of optimization at higher

cost time [82]. The NF-MOPSO uses 500 or 5000 number

of iterations which is still competitive with the number of

iterations used in OMOPSO (20,000 iterations), EMOPSO

(2000 iterations), dMOPSO (15,000 iterations for two

objectives and 45,000 iterations for three objectives), HTL-

MOPSO (500–1000), SMOPSO (2000 and 7000 iterations),

and MMOPSO (60,000 and 178,000 iterations). The run-

ning time of the NF-MOPSO can further be improved by

integrating parallel computation mechanism to take

advantage of all computing resources such us a number of

cores available on a computer.

6 Application in real-life optimization

The practicability and availability of NF-MOPSO were

tested in the optimization of the geometric design of a

neutron radiography collimator [83, 84]. Neutron radiog-

raphy is a two-dimensional projection imaging technique

(similar to X-ray radiography) that utilizes penetrating

radiation (neutrons) to retrieve qualitative and quantitative

information of the internal structure of samples under

investigation. The integrity of the investigation relies on

the quality of a radiograph. A neutron collimator is one of

the most important components that define the quality

(contrast, resolution) of an image produced by a neutron

radiography system [85–88]; thus the design of the neutron

collimator needs to be simulated and optimized in virtual

environment to improve the quality of a neutron radiog-

raphy system [89–92].Ta
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Table 4 The average

computational time (in second)

of NF-MOPSO for two

objectives functions

Test function No. of variables No. of objectives No. iterations Average runtime (s)

Belegundu 2 2 500 2.63

Bihn1 2 2 500 0.90

Bihn2 2 2 500 1.00

Deb1 2 2 500 1.33

Deb2 2 2 500 0.93

Deb3 2 2 500 1.30

Fonseca1 3 2 500 0.63

Fonseca2 3 2 1000 1.10

Jimenez 2 2 5000 11.27

Kita 2 2 2000 10.73

Kursawe 3 2 5000 5.77

Laumanns 2 2 500 0.47

Lis 2 2 1000 1.23

Murata 2 2 5000 6.43

Obayashi 2 2 500 0.70

Oka1 2 2 5000 11.47

Osyczka1 2 2 5000 44.00

Poloni 2 2 500 0.60

Rendon1 2 2 500 0.63

Rendon2 2 2 500 0.60

Schaffer1 1 2 500 1.33

Schaffer2 1 2 500 1.03

Srinivas 2 2 500 0.83

Tanaka 2 2 500 0.27

Zdt1 30 2 500 1.90

Zdt2 30 2 500 1.90

Zdt3 30 2 500 1.53

Zdt4 10 2 500 1.00

Zdt6 10 2 500 0.90

Table 5 The average

computational time (in second)

of NF-MOPSO for three

objectives functions

Test function No. of variables No. of objectives No. iterations Average runtime (s)

Bihn3 2 3 500 19.90

Bihn4 2 3 500 17.47

Dtlz1 12 3 1500 65.27

Dtlz2 12 3 500 19.67

Dtlz3 12 3 500 12.67

Dtlz4 12 3 1000 37.77

Dtlz5 12 3 5000 187.93

Dtlz6 12 3 5000 169.37

Dtlz7 12 3 1000 35.00

Dtlz8 30 3 1000 36.47

Dtlz9 30 3 5000 368.73

Tamaki 3 3 5000 178.30

Viennet1 2 3 5000 182.30

Viennet2 2 3 3000 103.80

Viennet3 2 3 1000 41.80

Viennet4 2 3 1000 47.73
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6.1 Neutron collimator optimization problem

The neutron collimator optimization is normally performed

to allow the productions of a high neutron intensity, and a

large area of homogenous neutron beam at the position of

the image formation [89–91]. The measurement of the flux

profile (intensity) and the homogeneity of the neutron beam

are illustrated in Fig. 3

The ideal neutron radiography beam should have a large

area of homogeneity, a high neutron flux at the detector

position. A large area of homogeneity provides a large field

of view, thus allows the investigation of bigger samples. A

high neutron flux gives better contrast and gives the pos-

sibility of shortening the time for the neutron scan. The two

main objectives (large area and high flux) are in conflict

Table 6 Comparison of score

between NF-MOPSO and

MOPSO

Test function GD Spacing ER

NF-MOPSO MOPSO NF-MOPSO MOPSO NF-MOPSO MOPSO

Kursawe 4.27E-02 3.65E202 3.72E203 1.09E-01 2.96E202 1.33E-01

Laumanns 1.55E-02 8.45E203 2.46E204 9.75E-02 1.98E202 2.54E-01

Score (%) 0 100 100 0 100 0

Table 7 Comparison of score between NF-MOPSO and OMOPSO

Test function IGD

NF-MOPSO OMOPSO

ZDT1 4.30E203 1.00E202

ZDT2 1.62E204 3.40E202

ZDT4 1.29E202 3.00E202

DTLZ6 1.06E203 6.50E203

Score (%) 100 0

Table 8 Comparison of score between NF-MOPSO and EMOPSO

Test function IGD

NF-MOPSO EMOPSO

ZDT1 4.30E203 2.20E203

ZDT2 1.62E204 7.00E204

ZDT3 4.22E204 2.00E203

ZDT4 1.29E202 8.11E?00

ZDT6 6.37E204 9.80E202

Score (%) 80 20

Table 9 Comparison of score between NF-MOPSO and dMOPSO

Test function Spacing

NF-MOPSO dMOPSO

DTLZ2 2.53E-01 2.42E202

DTLZ6 1.94E203 3.56E203

DTLZ7 2.00E201 1.03E201

FONSECA2 1.60E205 4.12E203

ZDT1 1.64E204 4.82E203

ZDT2 1.37E205 4.23E203

ZDT3 1.92E205 1.67E202

ZDT4 2.57E202 6.00E203

ZDT6 1.17E203 2.76E203

Score (%) 67 33

Table 10 Comparison of score between NF-MOPSO and

HTLMOPSO

Test function IGD

NF-MOPSO HTLMOPSO

DTLZ1 6.76E203 2.06E-02

DTLZ2 1.51E202 6.02E-02

DTLZ5 2.82E204 3.78E-03

DTLZ7 7.66E203 4.35E-02

ZDT1 4.30E-03 3.88E203

ZDT2 1.62E204 3.85E-03

ZDT3 4.22E204 4.82E-03

ZDT4 1.29E-02 3.99E203

ZDT6 6.37E204 3.08E-03

Score (%) 78 22

Table 11 Comparison of score between NF-MOPSO and SMOPSO

Test function Spacing GD

NF-MOPSO SMOPSO NF-MOPSO SMOPSO

Bihn2 2.49E-01 1.16E201 1.70E-02 2.69E203

Deb2 2.59E205 3.40E-03 1.00E204 2.98E-04

Viennet3 9.25E203 3.96E-01 7.02E204 1.11E-02

Score (%) 67 33 67 33
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with each other. This makes a neutron collimator opti-

mization a real-life multi-objective optimization problem.

In this example, the NF-MOPSO was tested in the

optimization of the geometrical design of a neutron

radiography collimator at the beam tube 2 situated at the

SAFARI-1 nuclear research reactor at Nesca [93]. The

objective of this optimization is to find the best size and the

best position of the collimator aperture that optimize the

intensity and the flat part of the flux profile (homogeneity

of the neutron beam). The size and the position of the

aperture were defined in term of the diameter D and the

position L of the aperture relative to the detector (assuming

the sample is placed very close to the detector position),

respectively, as illustrated in Fig. 4.

The L=D ratio characterizes the ideal neutron beam [86].

A high L=D ratio is desirable, but the high L=D ratio comes

with the cost of the neutron beam intensity.

The objectives of the optimization function were the

neutron flux and the area of homogeneity. The maximum

gray value Gv and the radius of beam homogeneity Rh were

used to measure the neutron flux and the area of homo-

geneity, respectively. A multi-objective optimization

problem for a neutron collimator was defined mathemati-

cally as:

Maximize f~coll p~collð Þ subject to ð20Þ
qj p~collð Þ� cj j ¼ flux; homogeneityf g ð21Þ

pmin � pi � pmax i ¼ 1; 2; 3; . . .;mf g ð22Þ

where f~coll ¼ fflux; fhomogeneity

� �
is a vector function repre-

senting the objective functions for collimator optimization,

fflux and fhomogeneity are objectives functions for collimator

optimization, p~coll is a vector of decision variables repre-

senting the collimator parameters D and L, qj is the

inequality constraint function, cj is the constraint value for

objective j, pmin and pmax are the lower and upper bound-

aries, respectively, for decision variable pi.

The values of f~coll were computed using a radiography

simulator presented in [94] in which the NF-MOPSO was

integrated with as illustrated in Fig. 17 of ‘‘Appendix 4’’.

The allowed positions of the aperture are at a distance

between 300 and 900 cm from the entrance window of the

neutron beam tube as illustrated in Fig. 4. The maximum

possible diameter of the aperture was determined by the

diameter of the entrance window of the neutron beam tube.

The boundary conditions for the decision space are defined

in Table 14 using the allowed position and maximum

diameter of the aperture.

6.2 Results and discussion

The NF-MOPSO was used to optimize the collimator

problem using the same PSO setup parameter presented in

Table 1. The average time for the collimator optimization

was approximately 12 h on an 8-Core Intel CPU with 8 GB

RAM computer. The high running time is due to the

computational cost required to simulate each radiographic

image of a real like neutron radiography system using a

simulator. The results of optimization are presented in

Fig. 5.

The solutions to a geometrical optimization of a colli-

mator are presented in Fig. 5 in form of Pareto optimal

front and the corresponding Pareto optimal solutions both

Table 12 Comparison of score between NF-MOPSO and MMOPSO

Test function IGD

NF-MOPSO MMOPSO

Dtlz1 6.76E203 1.01E-02

Dtlz2 1.51E202 2.74E-02

Dtlz3 1.30E202 2.75E-02

Dtlz4 1.33E202 2.85E-02

Dtlz5 2.82E204 6.61E-02

Dtlz6 1.06E-03 6.44E204

Dtlz7 7.66E203 2.86E-02

Fonseca2 9.76E204 1.86E-03

Kursawe 1.34E202 1.63E-02

Schaffer1 1.16E203 8.00E-03

Schaffer2 1.02E-02 8.00E203

ZDT1 4.30E-03 1.87E203

ZDT2 1.62E204 1.91E-03

ZDT3 4.22E204 2.10E-03

ZDT4 1.29E-02 1.84E203

ZDT6 6.37E204 1.56E-03

Score (%) 75 25

ZDT4: Pareto Optimal front

Objective 1
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Fig. 1 NF-MOPSO performance results on ZDT4 test function

Neural Computing and Applications

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



obtained using NF-MOPSO. The 300-cm aperture position

taken by all the solutions in Fig. 5 (right hand side) are at

the lower boundary of the search space (pmin ¼ 300 in

Table 14). Further analyses were conducted to confirm if

the optimization solutions favor the aperture position that is

the closest to the neutron source. The analyses were done

by repeating the neutron collimator optimization with dif-

ferent search ranges (different values of pmin). The results

of the analysis are shown in Fig. 6.

The results in Fig. 6 confirmed that all the Pareto opti-

mal solutions provide the aperture position at the lower

bound pmin of the search range. The lower bound of the

search range is the closest position to the neutron source.

The results in Fig. 6 also show that the number of possible

optimal solutions decreased as the search range moves

further away from the neutron source. An MCNP simula-

tion [95] of the flux profile confirmed the results in Fig. 6

that shows that the best profile conditions will be achieved

with the aperture position nearest to the neutron source.

Five L=D ratio taken from five Pareto optimal solutions

in Fig. 5 (right hand side) were taken as example inputs to

the simulation to visualize the output radiographs of an

optimized neutron radiography collimator. The simulated

radiography and their analysis presented in Fig. 7 shows

that the NF-MOPSO was able to provide Pareto optimal

solutions within which one or more solutions can be

selected in design of a neutron radiography collimator

within the boundary or design conditions.

Fig. 2 NF-MOPSO

performance on ZDT4 using

randomly generated values of

the PSO control parameters

Table 13 Performance values of c1 = c2.

Set

no.

PSO

parameters

Performance metrics

c1 c2 x GD IGD Spacing ER

1 0.2 0.2 0.7 1.05E-01 8.54E-02 3.80E-01 3.33E-01

2 0.4 0.4 0.7 1.49E-01 8.27E-02 1.55E-01 5.19E-01

3 0.6 0.6 0.7 4.55E-02 1.81E-02 1.12E-02 3.75E-01

4 0.8 0.8 0.7 2.56E101 2.61E100 6.27E102 1.00E100

5 1 1 0.7 8.30E-03 9.95E-03 5.80E-03 2.00E-01

6 1.2 1.2 0.7 2.91E-02 5.60E-02 1.93E-01 1.30E-01

7 1.4 1.4 0.7 3.83E-03 9.14E-03 7.16E-03 9.09E-02

8 1.6 1.6 0.7 5.03E-03 1.12E-02 1.14E-02 9.09E-02

9 1.8 1.8 0.7 2.57E-02 1.41E-02 5.11E-02 1.30E-01

10 2 2 0.7 3.32E100 1.12E-01 2.20E101 8.18E-01

11 2.2 2.2 0.7 1.33E101 1.74E100 1.10E102 1.00E100

12 2.4 2.4 0.7 1.90E101 2.29E100 2.80E102 1.00E100

13 2.5 2.5 0.7 1.73E101 2.65E100 2.89E101 1.00E100
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7 Conclusion

A multi-objective particle swarm optimization called the

NF-MOPSO was presented. The NF-MOPSO used the

same constant values for PSO control parameters

throughout the optimization process and for all test func-

tions used in the study. The advantage of using the values

of PSO control parameters that guarantee an equilibrium

state and convergence to a solution, has been demonstrated

in NF-MOPSO. The values of the control parameters c1
and c2, and x in the NF-MOPSO performed well on all test

functions used in the study. The NF uses a Gaussian

mutation operator with decreasing mutation rate that does

not require manual fine-tuning. The search mechanism

used in NF-MOPSO make is to be more efficient and easy

to implement since it uses the generic PSO techniques. The

NF-MOPSO has improved the performance of the original

MOPSO of Coello Coello and Lechuga. Furthermore the

test results showed that the NF-MOPSO performance and

the running time are competitive compared with existing

state of the art MOPS. The capability of the NF-MOPSO

was also demonstrated in a real-life MOOP, where a col-

limator optimization problem was solved by the NF-

MOPSO without fine-tuning the PSO control parameters.

The NF-MOPSO was able to provide Pareto optimal

solutions within which one or more solutions can be

selected to design of a neutron radiography collimator.

Future work will focus on integration of parallel computing

in NF-MOPSO to further improve computational time

when applied in real-life optimization problems; other

focus will explore the possibility of using the same

approach used in NF-MOPSO to solve many objectives

optimization problems.

Fig. 3 Illustration of measurement of the beam intensity and

homogeneity from the image

Fig. 4 Illustration of the

geometry of the radiography

beam tube at the SAFARI-1

nuclear research reactor

Table 14 Boundary of the search space for collimator optimization

Decision variable pmin pmax

Aperture diameter (cm) 0.07 25

Aperture position (cm) 300 900
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Fig. 5 Pareto optimal front (right) and the corresponding Pareto optimal solutions (left) for neutron radiography collimator

Pareto Solutions based on search range
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Fig. 6 Pareto optimal solutions

obtained from different

boundary conditions of the

search space
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Appendix 1: NF-MOPSO algorithm

See Fig. 8.

Fig. 7 Visualization and

analysis of simulated

radiography using five L=D
ratio from Pareto optimal

solutions
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Fig. 8 NF-MOPSO algorithm
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Appendix 2: Performance results of two
objectives test functions

See Figs. 9, 10, 11, 12, 13, 14.
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Fig. 9 Graphical performance

results for two objectives test

functions of NF-MOPSO vs true
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Fig. 10 Graphical performance

results for two objectives test

functions of NF-MOPSO vs

Theory
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Fig. 11 Graphical performance

results for two objectives test

functions of NF-MOPSO vs

Theory
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Fig. 12 Graphical performance

results for two objectives test

functions of NF-MOPSO vs

Theory
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Fig. 13 Graphical performance

results for two objectives test

functions of NF-MOPSO vs

Theory
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Appendix 3: Performance results of three
objectives test functions

See Figs. 15, 16.

Fig. 14 Graphical performance results for two objectives test functions of NF-MOPSO vs Theory
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Fig. 15 Graphical performance

results for three objectives test

functions of NF-MOPSO vs

Theory
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Fig. 16 Graphical performance results for three objectives test functions of NF-MOPSO vs Theory
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Appendix 4: Flowchart of collimator
optimization

See Fig. 17.
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