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Abstract—In recent years, Wireless Sensor Networks (WSNs) have
transitioned from being objects of academic research interest to a
technology that is frequently being employed in real-life applications
and rapidly being commercialized. The performance of a WSN is
largely affected by high quality deployment and precise localization
of sensor nodes. This article deliberates autonomous deployment of
sensor nodes from an Unmanned Aerial Vehicle (UAV). This kind
of deployment has importance in emergency applications, such as
disaster monitoring and battlefield surveillance. The goal is to deploy
the nodes only in the terrains of interest, which are distinguished
by segmentation of the images captured by a camera on board
the UAV. In this article we propose an improved variant of a
very powerful real parameter optimizer, called Differential Evolution
(DE) for image segmentation and for distributed localization of the
deployed nodes. Image segmentation for autonomous deployment and
distributed localization are designed as multidimensional optimization
problems and are solved by the proposed algorithm. Performance of
the proposed algorithm is compared with other prominent adaptive
DE-variants like SaDE and JADE as well as a powerful variant of
the Particle Swarm optimization (PSO) algorithm, called CLPSO.
Simulation results indicate that the proposed algorithm performs
image segmentation faster than both types of algorithm for optimal
thresholds. Moreover in case of localization it gives more accurate
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results than the compared algorithms. So by using the proposed
variant of Differential Evolution improvement has been achieved both
in the case of speed and accuracy.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are networks of distributed
autonomous nodes that can sense or monitor physical or environmental
conditions cooperatively [1]. An ad-hoc WSN consists of a number of
sensors spread across a geographical area. Each sensor has wireless
communication capability and some level of intelligence for signal
processing and networking of the data. The development of WSNs
was originally motivated by military applications such as battlefield
surveillance. However, they are currently being employed in many
industrial and civilian application areas including industrial process
monitoring and control, machine health monitoring, environment and
habitat monitoring, healthcare applications, home automation, and
traffic control [2–8]. A few excellent surveys on the present state-of-the-
art research on sensor networks can be traced in [9–13]. Usually in case
of environment and habitat monitoring the sensor nodes are deployed
by a helicopter. But this method of deployment cannot be used in
case of monitoring a territory which is dangerous or hostile. Thus the
use of autonomous unmanned aerial vehicle is evident [14]. Modern
UAVs use control and perception to undergo coordinated deployment
missions [15].

For UAVs Computer Vision can be used as a perception for
estimation of motion and position, detection and tracking of objects,
autonomous takeoff and landing, and in other practical applications,
such as detection, monitoring, and terrain mapping. Terrain
recognition by means of image segmentation has high relevance in
case of autonomous node deployment because this methodology can
be used for deploying the nodes only in the terrains of interest, i.e.,
avoiding water or fire. The loss of sensor nodes can be reduced by such
a deployment scheme and so the same sensing coverage can be done
by less number of nodes.

Image segmentation is used as a pre-processing technique by most
machine vision methods. For segmenting an image into two or more
classes usually thresholding technique is applied. Let f(x, y) denote a
grayscale image of size H ×W pixels that has L intensity levels. For
two level thresholding a threshold value tis to be found which performs
the operation expressed by (1) for x = 1, 2, . . . , H and y = 1, 2, . . . , W .

F (x, y) =
{

0 if f (x, y) ≤ t
L if f (x, y) > t

(1)
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The above concept can be extended to three-level thresholding, in
which there exist two threshold levels t1 and t2 such that t1 < t2, and
the thresholding operation is performed, as expressed in the following
equation:

0 if f(x, y) ≤ t1
F (x, y) = 1

2 (t1 + t2) if t1 < f (x, y) ≤ t2
L if f (x, y) > t2

(2)

This can be further extended to generic n-level thresholding
in which n − 1 threshold levels t1, t2, . . . , tn−1 are necessary. It
is obvious from Equations (1) and (2) that the effectiveness of
multilevel segmentation largely depends on the values of threshold
levels t1, t2, . . . , tn−1. Many methods for obtaining this threshold values
are reported, a survey of which is presented in [16]. The finding of this
threshold values can be formulated as an optimization problem.

Location is very important in WSNs for monitoring and tracking
applications because Location information of the nodes can be utilized
for detecting and recording events or for routing packets by means
of geometric aware routing [17, 18] and sometimes the data is the
location itself that is to be sensed [19]. Providing each node with
a GPS is not an efficient solution because of cost, size, and energy
constraints associated with it. Node localization, which is used to
locate the positions of all deployed sensors, has emerged as an area
of active research. Majority of the localization algorithms available so
far possess a common characteristic that they evaluate the locations of
the deployed nodes utilizing a priori knowledge of the coordinates of a
particular type of nodes termed as beacons, landmarks, or anchors [20].

A WSN contains N nodes, each characterized by a communication
range of r, dispersed in a 2-D mission field. The WSN can
be formulated as the Euclidean graph G = (V, E), where V =
{v1, v2, . . . , vn} denotes the collection of sensor nodes. 〈i, j〉 ∈ E if the
separation between vi and vj is dij < r. Unknown nodes (also called
free or dumb nodes) are the set U of nonbeacon nodes. Nonbeacon
nodes are unaware of their localization information. Settled nodes are
the set S of nodes that have been able to locate their positions by
means of the localization algorithm. Given a WSN G = (V, E), and a
set of beacon nodes B and their positions (xb, yb) for all b ∈ B, we need
to find the position coordinates (xu, yu) of as many u ∈ U as possible,
converting the unknown nodes into settled nodes S.

WSN localization is basically a two-phase phenomenon. In the
first phase nodes evaluate their distances from beacons (or settled
nodes) by means of the information regarding signal propagation
time or the received signal strength. The signal propagation time is
calculated through the estimation of the arrival time, the round trip
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time of flight, or the difference in arrival time of the signal. This
phase is regarded as the ranging phase. Noise has an adverse effect
on the precise measurement of these parameters. So, the localization
algorithms that depend on these parameters are likely to provide
inaccurate results. In the second phase, position estimation of the
target nodes is performed using the information obtained in the first
ranging phase. This is done in two methods, either by solving a set of
simultaneous equations, or by applying an optimization algorithm that
diminishes the localization error. In iterative localization algorithms,
the settled nodes perform the function of beacons and the localization
process is repeated until either all nodes become a member of the
set of settled nodes, or no more nodes are available to be localized.
The WSN localization problem has been tackled by several interesting
approaches, a survey of which is presented in [21]. An overview
of Sensor Localization Systems is presented in [22]. A survey on
Localization for mobile wireless sensor networks is portrayed in [23].

The Differential Evolution (DE) [24, 25] algorithm emerged as a
very competitive form of evolutionary computing more than a decade
ago. Since then, the DE family of algorithms has been frequently
adopted to tackle multi-objective, constrained, dynamic, large scale,
and multimodal optimization problems and the resulting variants have
been achieving top ranks in various competitions held under the
IEEE CEC (Congress on Evolutionary Computation) conference se-
ries (e.g., see http://www3.ntu.edu.sg/home/epnsugan/index files/cec-
benchmarking.htm). In this paper we propose a new variant of DE,
called ADE, where we introduce a new group-based mutation strat-
egy, novel schemes for the adaptation of control parameters scale fac-
tor (F ) and crossover rate (Cr), and also an exploitative crossover
strategy (p-best crossover). We use this algorithm for thresholding
of images captured from a downward-pointing camera on board the
UAV used for autonomous deployment of WSN nodes. The same al-
gorithm is proposed for post deployment distributed node localization
in the WSN. The results of ADE have been compared with SaDE [26],
JADE [27] and CLPSO [28]. The remainder of the paper is organized
as follows: a short account of Differential Evolution is given in Sec-
tion 2. In Section 3 the proposed algorithm ‘Adaptive Differential
Evolution’ (ADE) is described. In Sections 4 and 5 ADE-based image
segmentation and ADE based iterative node localization is described
respectively. Section 6 provides details of the simulation experiments
conducted, presents the results and discusses their implications. Fi-
nally, Section 7 concludes the paper.
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2. CLASSICAL DIFFERENTIAL EVOLUTION

DE is a simple real-coded evolutionary algorithm. It works through a
simple cycle of stages, which are detailed below.

2.1. Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-dimensional continuous
hyperspace. It begins with a randomly initiated population of
NPD dimensional real-valued parameter vectors. Each vector, also
known as genome/chromosome, forms a candidate solution to the
multi-dimensional optimization problem. We shall denote subsequent
generations in DE by G = 0, 1, . . . , Gmax. Since the parameter vectors
are likely to be changed over different generations, we may adopt the
following notation for representing the i-th vector of the population at
the current generation:

~Xi,G = [x1,i,G, x2,i,G, x3,i,G, . . . , xD,i,G]. (3)

The initial population (at G = 0) should cover the entire search
space as much as possible by uniformly randomizing individuals
within the search space constrained by the prescribed minimum and
maximum bounds: ~Xmin = {x1,min, x2,min, . . . , xD,min} and ~Xmax =
{x1,max, x2,max, . . . , xD,max}.

Hence we may initialize the j-th component of the i-th vector as:

xj,i,0 = xj,min + randi,j [0, 1) · (xj,max − xj,min), (4)

where rand is a uniformly distributed number lying between 0 and
1 and is instantiated independently for each component of the i-th
vector.

2.2. Mutation with Difference Vectors

After initialization, DE creates a donorvector~Vi,n corresponding to
each population member or target vector ~Xi,G in the current generation
through mutation. Five most frequently referred mutation strategies
implemented in the public-domain DE codes available online at
http://www.icsi.berkeley.edu/∼storn/code.html are listed below:

“DE/rand/1”: ~Vi,G = ~Xri
1,G + F · ( ~Xri

2,n − ~Xri
3,G). (5)

“DE/best/1”: ~Vi,G = ~Xbest,G + F · ( ~Xri
1,G − ~Xri

2,G). (6)
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“DE/target-to-best/1”:
~Vi,G = ~Xi,G + F · ( ~Xbest,G − ~Xi,G) + F · ( ~Xri

1,G − ~Xri
2,G). (7)

“DE/best/2”:
~Vi,G = ~Xbest,G + F · ( ~Xri

1,G − ~Xri
2,G) + F · ( ~Xri

3,G − ~Xri
4,G). (8)

“DE/rand/2”:
~Vi,G = ~Xri

1,G + F · ( ~Xri
2,G − ~Xri

3,G) + F · ( ~Xri
4,G − ~Xri

5,G). (9)

The indices ri
1, ri

2, ri
3, ri

4, and ri
5 are mutually exclusive integers

randomly chosen from the range [1, NP ], and all are different from
the index i. These indices are randomly generated once for each
donor vector. The scaling factor F is a positive control parameter for
scaling the difference vectors. ~Xbest,G is the best individual vector with
the best fitness (i.e., lowest objective function value for minimization
problem) in the population at generation G. The general convention
used for naming the various mutation strategies is DE/x/y/z, where
DE stands for Differential Evolution, x represents a string denoting
the vector to be perturbed and y is the number of difference vectors
considered for perturbation of x. z stands for the type of crossover
being used (exp: exponential; bin: binomial). The following section
discusses the crossover step in DE.

2.3. Crossover

To enhance the potential diversity of the population, a crossover
operation comes into play after generating the donor vector through
mutation. The donor vector exchanges its components with the target
vector ~Xi,G under this operation to form the trial vector ~Ui,G =
[u1,i,G, u2,i,G, u3,i,G, . . . , uD,i,G]. In this article we focus on the widely
used binomial crossover that is performed on each of the D variables
whenever a randomly generated number between 0 and 1 is less than or
equal to the Cr value. In this case, the number of parameters inherited
from the donor has a (nearly) binomial distribution. The scheme may
be outlined as:

uj,i,G =
{

vj,i,G, if (randi,j [0, 1) ≤ Cr or j = jrand

xj,i,G, otherwise, (10)

where, as before, randi,j [0, 1) is a uniformly distributed random
number, which is called anew for each j-th component of the i-th
parameter vector. jrand ∈ [1, 2, . . . , D] is a randomly chosen index,
which ensures that ~Ui,G gets at least one component from ~Vi,G.
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2.4. Selection

The next step of the algorithm calls for selection to determine whether
the target or the trial vector survives to the next generation, i.e., at
G = G + 1. The selection operation is described as:

~Xi,G+1 = ~Ui,G, if f(~Ui,G) ≤ f( ~Xi,G)

= ~Xi,G, if f(~Ui,G) > f( ~Xi,G),
(11)

where f( ~X) is the objective function to be minimized.

3. THE ADE ALGORITHM

In this section, we outline ADE and discuss the steps of the algorithm
in sufficient details. The algorithm employs a new mutation scheme
called DE/target-to-gr best/1, a p-best crossover scheme, and rules for
adapting the control parameters F and Cr in each generation.

3.1. DE/Target-to-Gr best/1

In DE, greedy strategies like DE/current-to-best/k and DE/best/k
benefit from their fast convergence by guiding the evolutionary search
with the best solution so far discovered, thereby converging faster to
that point. But, as a result of such exploitative tendency, in many
cases, the population may lose its diversity and global exploration
abilities within a relatively small number of generations, thereafter
getting trapped to some locally optimal point in the search space.
Taking into consideration these facts and to overcome the limitations
of fast but less reliable convergence performance of DE/current-to-
best/1 scheme, in this article, we propose a less greedy and more
explorative variant of the DE/current-to-best/1 mutation strategy by
utilizing the best vector of a dynamic group of q% of the randomly
selected population members for each target vector. The new scheme,
which we call DE/current-to-gr best/1, can be expressed as:

~Vi,G = ~Xi,G + F · ( ~Xgr best,G − ~Xi,G + ~Xri
1,G − ~Xri

2,G), (12)

where ~Xgr best,G is the best of q% vectors randomly chosen from the
current population whereas ~Xri

1,G and ~Xri
2,G are two distinct vectors

picked up randomly from the current population. Under this scheme,
the target solutions are not always attracted towards the same best
position found so far by the entire population and this feature is helpful
in avoiding premature convergence at local optima. The parameter q is
known as the group size which controls the greediness of the mutation
scheme DE/target-to-gr best/1.
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3.2. The p-best Crossover

The crossover operation used in ADE is named as p-best crossover
where for each donor vector, a vector is randomly selected from the p
top-ranking vectors (according to their objective function values) in the
current population and then normal binomial crossover is performed as
in Equation (10) between the donor vector and the randomly selected
p-best vector to generate the trial vector at the same index.

3.3. Parameter Adaptation Schemes in ADE

3.3.1. Scale Factor Adaptation

At every generation, the scale factor Fi of each individual target vector
is independently generated as:

Fi = Cauchy(Fm, 0.1), (13)

where Cauchy(Fm, 0.1) is a random number sampled from a Cauchy
distribution with location parameter Fm and scale parameter 0.1. The
value of Fi is regenerated if Fi ≤ 0 or Fi > 1. Denote Fsuccess as
the set of the successful scale factors, so far, of the current generation
generating better trial vectors that are likely to advance to the next
generation. Also let meanA(FG−1) is the simple arithmetic mean of all
scale factors associated with population members in generation G− 1.
Location parameter Fm of the Cauchy distribution is initialized to be
0.5 and then updated at the end of each generation in the following
manner:

Fm = wF · Fm + (1− wF ) ·meanPow(Fsuccess) (14)

The weight factor wF is set in the following way:

Case 1 : If meanA(FG−1)<0.85 wF =(0.9+0.01·(rand(0, 1))) (15)
Case 2 : If meanA(FG−1)≥0.85 wF =(0.8+0.01·(rand(0, 1))) (16)

where rand(0, 1) stands for a uniformly distributed random number in
(0, 1) and meanPow stands for power mean given by:

meanPow(Fsuccess) =
∑

x∈Fsuccess

(xn/ |Fsuccess |)1/n , (17)

with |Fsuccess | denoting the cardinality of the set Fsuccess . We have
taken the value of n as 1. Small random perturbations to the weight
terms of Fm and meanPow puts slightly varying emphasis on the two
terms each time an F is generated, and improves the performance of
ADE as revealed through our parameter tuning experiments.
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3.3.2. Crossover Probability Adaptation

At every generation the crossover probability Cri of each individual
vector is independently generated as:

Cri = Gaussian(Crm, 0.1), (18)

where Gaussian(Crm, 0.1) is a random number sampled from a
Gaussian distribution according with mean Crm and standard
deviation 0.1. Cri is regenerated if it falls outside the interval [0, 1].
Denote Crsuccess as the set of all successful crossover probabilities Cri’s
at the current generation. The mean of the normal distribution Crm

is initialized to be 0.6 and then updated at the end of each generation
as:

Crm = wCr · Crm + (1− wCr) ·meanPow(Crsuccess), (19)

with the weight being set as:

wCr = 0.9 + 0.001 ∗ rand(0, 1), (20)

The power mean is calculated as:

meanPow(Crsuccess) =
∑

x∈Crsuccess

(xn/ |Crsuccess |)1/n , (21)

where |Crsuccess | denotes the cardinality of the set Crsuccess . Here also
we took n = 1.5.

4. BASED IMAGE THRESHOLDING FOR
AUTONOMOUS DEPLOYMENT

There exist numerous image segmentation methods that are classified
into the following categories based on the image information they
exploit:

• histogram-shape-based methods;
• clustering-based methods;
• entropy-based methods;
• object-attribute-based methods;
• spatial methods;
• local methods.

The ADE based image thresholding method used here exploit
the image histogram shape. Otsu [29] proposed a nonparametric
and unsupervised method of automatic threshold selection for image
segmentation. This method establishes three appropriate criteria for
evaluating the suitability of a given threshold level from the image
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histogram. The following paragraphs discuss the basics of the Otsu
evaluation criteria and point out strengths and weaknesses of the Otsu-
based exhaustive search. Consider a digital image having a height of H
pixels and a width of W pixels, in which the intensities are represented
in L gray levels [1, 2, . . . , L]. Let ni represent the number of pixels
having intensity level i. It can be observed that the total number of
pixels N satisfies N = H×W = n1+n2+ . . .+nL. The 1−D vector ni

with i = [1, 2, . . . , L] represents the image histogram. The histogram
is normalized and regarded as a probability distribution as follows:

pi =
ni

N
, pi > 0 and

L∑

i=1

pi = 1 (22)

Suppose it is desired to dichotomize the pixels into classes C1,
which represents background, and C2, which represents an object,
using a threshold level t. The class C1 contains all pixels having
intensities less than or equal to t, and the class C2 contains all pixels
having intensities greater than t. The probabilities of occurrence
classes C1 and C2 are given as follows:

w1 (t) = Pr (C1) =
t∑

i=1

pi (23)

w2 (t) = Pr (C2) =
L∑

i=t+1

pi (24)

The mean levels of classes C1 and C2 are given by,

µ1 (t) =
t∑

i=1

ipi

w1
(25)

µ2 (t) =
L∑

i=t+1

ipi

w2
(26)

These probabilities and mean levels satisfy the conditions w1(t)+
w2(t) = 1 and w1µ1 + w2µ2 = µT , where

µT = µ (L) =
L∑

i=1

ipi (27)

is the total mean level of the image. The variance of distribution of
pixels in classes C1 and C2 are given by,

σ2
1 (t) =

t∑

i=1

{i− µ1 (t)}2 pi

w1
(28)
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σ2
2 (t) =

L∑

i=t+1

{i− µ2 (t)}2 pi

w2
(29)

In order to evaluate the goodness of the threshold at level t,
Otsu introduced three objective functions (λ), (κ), and (η), defined
as follows:

λ =
σ2

B

σ2
W

, κ =
σ2

T

σ2
W

and η =
σ2

B

σ2
T

(30)

where σ2
W is the within-class variance, σ2

B is the between-class variance,
and σ2

T is the total variance. These are defined in as follows:

σ2
W = w1σ

2
1 + w2σ

2
2 (31)

σ2
B = w1w2 + (µ2 − µ1)

2 (32)

σ2
T =

L∑

i=1

(i− µT )2 pi (33)

With this, the problem of two-level thresholding is reduced to an
optimization problem to search for the threshold t∗ that maximizes
one of the objective functions defined in Equations (32)–(34). It also
follows that the threshold t∗ that maximizes σ2

B also minimizes σ2
W . A

simple approach to optimal thresholding is to perform an exhaustive
sequential search for a threshold level t∗, which satisfies σ2

W (t∗) =
min1≤t<L σ2

B(t). This can be extended to n-level thresholding problem,
which involves n − 1 thresholds that satisfy σ2

W (t∗1, t
∗
2, . . . , t

∗
n−1) =

min1≤t1<t2<...<tn−1<L σ2
W (t1, t2, . . . , tn−1).

The exhaustive search method based on the Otsu criterion
is simple and straightforward, but it has a weakness that it is
computationally expensive. The ranges of n − 1 candidate thresholds
for n-level thresholding are as follows: 1 ≤ t1 < L − n + 1, t1 + 1 ≤
t2 < L − n + 2 and tn−2 + 1 ≤ tn−1 < L − 1. Exhaustive search
for n−1 optimal thresholds involves evaluations of objective functions
of n(L− n + 1)n−1 combinations of thresholds. Therefore, it is not
a suitable choice for the applications that require real-time multilevel
image thresholding.

The task of determining n − 1 optimal thresholds for n-
level image thresholding can be formulated as a multidimensional
optimization problem. In this study, ADE been used to determine
the thresholds that minimizes the within-class variance σ2

W of the
intensity distributions. For ADE, the position of a particle i is defined
as Xi = {t1, t2, . . . , tn−1}. The vectors of the population are evaluated
for the fitness function, which is defined as the within-class variance
σ2

W of the image-intensity distributions.
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This is shown in the following equation:

f (Xi) = σ2
W (Xi) (34)

The goal of ADE is to determine the position in the search space
that satisfies Equation (36).

Xbest = min
1≤t1<t2...<tn−1<L

σ2
W (t1, t2, . . . , tn−1) (35)

5. BASED ITERATIVE NODE LOCALIZATION

The goal of WSN node localization is to obtain distributed evaluation
of coordinates of the maximum of N target nodes using M stationary
beacons that are aware of their positions. The node localization in a
WSN is performed in this study as described below.

1) N dumb nodes and M beacons each having a transmission radius
of r units are deployed from a UAV in a sensor field. Beacon
nodes know their locations, and the information regarding their
coordinates is utilized to locate the dumb nodes. The nodes
that become settled at the termination of each iteration serve as
references in the next generation, in which they function as the
beacons do.

2) Each node that is situated within the transmission range of three
or more beacons or settled nodes is termed as a localizable node.

3) Each localizable node in the deployment field evaluates its distance
from each of its neighbouring beacons or settled nodes. The
measurement noise considered here is taken as Additive White
Gaussian noise (AWGN). A node calculates its distance from a
beacon i as d̂i = di + ni, where di represents the actual distance
formulated as

di =
√

(x− xi)2 + (y − yi)2.

Here, (x, y) represents the position of the target node, and
(xi, yi) is the location coordinates of the ith beacon present in
the neighbourhood of the target node. The measurement noise
ni takes on a random numerical value uniformly distributed
within the interval di ± di(Pn/100). It is evident that the
localization result is dependent on the amount of Pn, the
percentage noise that adversely affects the parameters involved
in distance measurements.

4) Each localizable node independently applies ADE to locate the
coordinates (x, y) that minimize the objective function. The
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objective function is basically the error defined as follows:

f (x, y) =
1
M

M∑

i=1

(√
(x− xi)

2 + (y − yi)
2 − d̂i

)2

(36)

where M ≥ 3 is the number of beacons or settled nodes falling
within the transmission radius of the target node.

5) ADE searches for the coordinates (x, y) that will minimize the
error in Equation (36), therefore, the fitness space is basically a
2-dimensional landscape.

6) After all the localizable nodes are able to find out their
coordinates, the total localization error is calculated as the mean
of squares of distances between actual locations (x̂i, ŷi), i =
1, 2, . . . , NL determined by ADE. This is evaluated as follows:

El =
1
N

L∑

i=1

(
(xi − x̂i)

2 + (yi − ŷi)
2
)

(37)

7) Steps 2 to 6 are repeated until either all the dumb nodes become
localized or no more nodes can be localized. The performance
metric of a localization algorithm is governed by the doublet
(NNL

, El), where NNL
= N − NL is the number of nodes that

are unable to be localized. The lower the values of NNL
and El,

the better the performance is.
The number of localized nodes increases with iterations. This increases
the number of references already available for localized nodes. A node
that localizes using just three references in an iteration k can possess
more references in iteration k + 1 due to increase in localizable nodes.
This diminishes the probability of the flip ambiguity. On contrary,
if a node has more references in iteration k + 1 than in iteration
k, the localization time increases. It is observed from exhaustive
experimentation that the maximum number of references can be safely
restricted to six.

6. EXPERIMENTS AND RESULTS

All the simulations are done on a Pentium core 2 duo machine with
2GB RAM and 2.23GHz speed.

6.1. Image Thresholding for Autonomous Deployment

All the algorithms are used to calculate the optimal thresholding values
by minimizing the within-class variance of the distribution of intensity
levels in the given image. The parameters for ADE are set as follows:
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1) Parameter q which controls the greediness of the mutation scheme
DE/current-to-gr best/1 is set to 1/4th of the population size.

2) Parameter p in p-best crossover is also taken as 1/4th of the
population size.

For the compared algorithms we employ the best suited parametric
set-up chosen as guidelines from their respective literature.

We have conducted three set of experiments on the given image
lake in Figure 1. This image consists of 256 intensity levels. The
comparison is made on the basis of the number of iterations taken
by the algorithms to reach the optimal threshold values as computed
by the exhaustive search algorithm which is basically a deterministic
process. All the computations are averaged over 50 independent runs.

6.1.1. 2-level Thresholding

The population size for all the contestant algorithms is kept as 20 for
2-level thresholding of the image. All the algorithms are successful
to find the optimal threshold values but ADE can converge to the
optimal values in minimum iterations as evident from Table 1. The
output image is shown in Figure 2.

6.1.2. 3-level Thresholding

Here the goal is to find the two threshold values t∗1 and t∗2. The
population size is kept as same as in the 2-level thresholding case.
This is a two-dimensional problem. The dimensions are initialized

Figure 1. Aerial image of
the lake used for ADE based
thresholding.

Figure 2. 2-level thresholding.
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as random integers between 1 and 256 so that 1 < t1 < t2 < 256.
The optimal thresholds computed by the algorithms are identical
with the exhaustive search results but it is clear from Table 1 that
ADE converges faster to the threshold values outperforming the other
algorithms. The 3-level thresholding image is shown Figure 3.

6.1.3. Multilevel Thresholding

Here the algorithm searches for the n−1 optimal threshold values. The
population size is kept at the same value (20) for all the algorithms for
fair comparison. Here also ADE can converge to the optima in lesser
number of iterations as shown in Table 1. Figure 4 shows the 4-level
thresholding of the given lake image.

Table 1. Summary of results for image thresholding.

Number SaDE JADE

Optimal

threshold(s)
Iteration

Optimal

threshold(s)
Iteration

2 112 10 112 8

3 103,146 20 103,146 18

4 94,125,155 30 94,125,155 27

5 90,119,143,179 46 90,119,143,179 42

Number CLPSO ADE

Optimal

threshold(s)
Iteration

Optimal

threshold(s)
Iteration

2 112 10 112 6

3 103,146 22 103,146 15

4 94,125,155 32 94,125,155 25

5 90,119,143,179 48 90,119,143,179 40

The objective is to deploy the sensors on dry land avoiding
the water and vegetated areas in which any sensor deployment will
be counted as a waste. 50 experiments of ADE-based autonomous
deployment are conducted on the image lake terrain where 40 nodes
and eight beacons are deployed. The outcome of one such experiment
is shown in Figure 5 which shows all sensor nodes and beacons being
deployed on dry land avoiding water and vegetative zones.

It is to be noted from Table 1 that all the contestant algorithms
are successful in finding out the optimal thresholding values. But
in emergency applications like disaster management and battlefield
surveillance, preference should be given to that algorithm which can
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Figure 3. 3-level thresholding. Figure 4. 4-level thresholding.

Figure 5. Node deployment.

provide us the optimal thresholding values in minimum number of
iterations. Table 1 clearly shows the superiority of ADE as an efficient
image thresholding algorithm. The superior performance of ADE can
be attributed to the p-best crossover operation which is exploitative
resulting in quick convergence. At the same time to avoid premature
convergence a less greedy and more explorative mutation scheme
DE/current-to-gr best/1 has been used and parameters F and Cr are
also adapted based on information of previous generations.

In autonomous deployment of wireless sensor nodes, the
thresholding of the terrain image taken from a downward-pointed
camera is done using ADE. The threshold information indicates
whether a node can be dropped at that location or not. The output
of thresholding of the image lake shows water and vegetated areas as
black pixels and dry land as white pixels.
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Figure 6. Distance between the actual node location and location
estimated by the algorithms for each node.

6.2. Iterative Node Localization

Since all the wireless sensor nodes are deployed randomly in the dry
land avoiding water bodies, we are unaware of the location of the nodes.
In this section we are going to find out the location of the nodes with
the help of the beacons as references using ADE. Performance of ADE
is compared with the same algorithms, i.e., SaDE, JADE and CLPSO.
For the experiment we have deployed forty nodes and eight beacons
randomly in a sensor field of dimensions 100× 100 square units. The
transmission radius of each beacon is taken to be r = 30 units. In
the experiment each target node that can be localized, i.e., falls within
the transmission radius of three or more beacons uses ADE to localize
itself. The population size for all the algorithms is kept as 30 and the
number of iterations taken to localize each node is 100. The positions
of each localizable node are randomly initialized between 0 and 100.
The parameters p and q in ADE are kept at the same value as in the
case of image thresholding. For the contestant algorithms we employ
the same parametric set-up as in the previous case.

Fifty ADE-based localization experiments are conducted for Pn =
2 and Pn = 5. In each experiment each algorithm is allowed to run
upto 4 iterations and at the end of each iteration the performance
metric (NNL

, El) is computed for each contestant algorithm. Table 2
shows the mean values of NNl

and El for each algorithm at the end
of four iterations both for Pn = 2 and Pn = 5. The lower the
values of these quantities, the better will be the performance of the
algorithm and ADE has clearly shown its superiority as evident from
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Table 2. (NNL
, El) for Pn = 5 and Pn = 2 after 4 iterations.

Pn = 5 Pn = 2

Algorithms
Mean

(NNL)

Mean

(El)

Mean

(NNL)

Mean

(El)

SaDE 0.86 0.0838 0.16 0.0123

JADE 0.72 0.0518 0.02 0.0085

CLPSO 1.26 0.2635 0.44 0.0205

ADE 0.48 0.0263 0.00 0.0015

Table 3. NL and El after the end of each iteration.

Algo-

rithms
Parameters Iteration 1 Iteration 2 Iteration 3 Iteration 4

SaDE
Mean (NL) 22.42 36.04 38.32 39.84

Mean (El) 4.0532 0.1343 0.0827 0.0123

JADE
Mean (NL) 23.28 36.42 38.92 39.98

Mean (El) 2.4653 0.1034 0.0553 0.0085

CLPSO
Mean (NL) 21.54 35.12 37.46 39.56

Mean (El) 8.7835 0.5594 0.1648 0.0205

ADE
Mean (NL) 24.66 37.82 39.74 40

Mean (El) 1.0734 0.1432 0.0147 0.0015

the table x. Further, in Table 3 we have reported the mean values
of Nl and El at the end of each iteration for each algorithm. ADE
has outperformed the well known DE and PSO variants and this
superior performance can be attributed to its algorithmic components-
DE/current-to-gr best/1, p-best crossover and parameter adaptation
based on information of previous generations.

The maximum amount of Gaussian additive noise, Pn affects the
distance accuracy measurements. It is to be noted form Table 2 that
the localization error El increases as the amount of noise Pn increases.
In Figure 6, we have plotted a bar graph showing the distance between
the actual node and the node location estimated by the algorithms

7. CONCLUSION

In this paper we propose a modified Differential Evolution scheme
namely ADE for segmentation of terrain images taken from an
UAV for autonomous deployment of sensor nodes and for distributed
localization of the deployed nodes in an iterative manner. Both the
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assignments have been formulated as multidimensional optimization
problems and solved by the proposed algorithm. The algorithm has
been briefly outlined and a statistical summary of the simulation results
are presented. It is clearly seen that ADE is able to perform image
segmentation faster than the competitor algorithms as well as reducing
the number of sensor nodes from being deployed in the terrains of no
interest. The distributed localization method presented in this paper
diminishes the number of transmissions to the base station assisting the
nodes to conserve their energy, which is a grave concern encountered
in majority of the applications of WSNs. Simulation results clearly
indicate that the positions of the nodes obtained by ADE are more
accurate. Our future work includes utilizing a vision system which
considers the colour and texture property of terrains.
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