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Abstract—This paper proposes two hybrid optimization 
methods based on Harmony Search algorithm (HS) and two 
different nature-inspired metaheuristic algorithms. In the first 
contribution, the combination was between the Improved 
Harmony Search (IHS) and the Particle Swarm Optimization 
(PSO). The second contribution merged the IHS with the 
Differential Evolution (DE) operators. The basic idea of 
hybridization was to ameliorate all the harmony memory 
vectors by adapting the PSO velocity or the DE operators in 
order to increase the convergence speed. The new algorithms 
(IHSPSO and IHSDE) have been compared to the IHS, DE, 
PSO and some other algorithms like DHS and HSDM. The 
DHS and HSDM are two existing algorithms, which use 
different hybridization concepts between HS and DE. All of 
these algorithms have been evaluated by different test 
Benchmark functions. The results demonstrated that the 
hybrid algorithm IHSDE have the better convergence speed 
into the global optimum than the IHSPSO and the standard 
IHS, DE and PSO. 

Keywords-component; Harmony Search; Improved Harmony 
Search; Differential Evolution; Particle Swarm Optimization; 
Benchmark functions. 

I.  INTRODUCTION  
In recent years, several researchers have devoted their 

attention to develop new optimization algorithms based on 
analogies with natural or behavioral phenomena.  The field 
of nature-inspired metaheuristic algorithms was principally 
constituted by the evolutionary algorithms like Genetic 
Algorithm (GA) [7] and Differential Evolution (DE) [14], as 
well as the swarm intelligence algorithms like Particle 
Swarm Optimization (PSO) [9], Bacterial Foraging 
Optimization (BFO) [11], and so on [19-27]. These 
algorithms have demonstrated their power in solving global 
complex optimization problems among whom learning of 
artificial neural networks [1, 2], Optimal Power Flow 
problem [16], Power Electronic Circuit Design [18], etc.  

In 2001, the field extends to include the mimic 
algorithm, Harmony Search (HS), developed by Geem [6]. 
This new algorithm was inspired from jazz musical 
improvisation when a musician (=decision variable) plays 
(= generate) a note (= value) to find a perfect state of 
harmony (= global optimum)[6].  

Since its invention, (HS) has received considerable 
attentions. Its effectiveness and advantages have been 
demonstrated in a wide range of applications [5], which 
directed research to further improve its performance. 
Moreover, in order to improve the adjusting characteristic of 
HS algorithm, Mahdavi et al. [10] suggested evolving the 
parameters instead of being fixed during the iterations. The 
Improved Harmony Search algorithm (IHS) was applied in 
various standard engineering optimization problems. 

Harmony Search (HS) is a phenomenon imitating an 
algorithm inspired by the improvisation process of 
musicians. The HS algorithm searches the solution area as a 
whole to find the optimum vector, which optimizes the 
objective function [6]. When the HS algorithm generates a 
new vector, it considers all of the existing vectors in the 
harmony memory with fewer mathematical requirements. 
This feature makes the HS more flexible, the 
implementation easier and it is very versatile to combine HS 
with other metaheuristic algorithms [17] such as Differential 
Evolution algorithm [14] and Particle Swarm Optimization 
algorithm [9]. 

All these factors pushed some researchers like 
Chakraborty et al. to propose hybridization between the HS 
and the differential evolution algorithm called the improved 
harmony search algorithm with differential mutation 
operator (DHS) [3]. In addition, Qin and Forbes presented 
the Harmony Search with Differential Mutation Based Pitch 
Adjustment (HSDM) [12]. 

In this context, some nature inspired meta-heuristic 
optimization algorithms such as PSO, DE and HS are 
adopted in this work. In the first phase, a new idea, which 
approximates the vectors of IHM to the swarm concept of 
PSO algorithm is introduced. In this case, at each iteration, a 
new position vector was computed for all individuals of the 
swarm to converge it to the global minimum. The IHSPSO 
algorithm inherited a new attribute named ‘Velocity’ and 
integrated it for the computation of the new vectors of 
harmony memory. In the second phase, the Differential 
Evolution (DE) algorithm was chosen to implement their 
operators (mutation, crossover and selection) in IHS 
generation vectors. By applying these instructions, a wide 
variety of values were being available to guide the 
hybridized algorithm IHSPSO and IHSDE towards the 



optimal solutions with more efficiency and speed. This 
work considers only the single-objective optimization 
problems. 

The remaining paper is organized as follows: Section 2 
describes the original HS, the improved HS and the observed 
weakness of these algorithms. In section 3, the hybrid 
method based on the IHS and PSO is presented. The 
combination method between the IHS and DE algorithms is 
provided in Section 4. The set of some simulation results is 
the subject of Section 5. Finally, some concluding remarks 
are presented in Section 6. 

II. HARMONY SEARCH (HS) 
This section contains a description of the basic Harmony 

Search algorithm; the improved method and the weakness on 
witch based our hybridizations. 

A. The Harmony Search algorithm 
In order to understand the Harmony Search concept, 

some explications of the improvisation process by a skilled 
musician are the subject of this section. When a musician 
improvises a note usually follows one of the three rules: (1) 
playing a note from his memory, (2) playing a note beside a 
note from his memory, or (3) playing a note totally random 
of the sound and feasible range. Similarly, the improvisation 
of harmony (vector) is essentially based on these rules. The 
steps in the procedure of harmony search are as follows [6]: 

1) Step 1. Formulation of the problem and parameter 
settings. 
Thus, to apply the HS, the problems should be formulated in 
the optimization environment, with the objective function 
and the parameters must be defined with certain values. The 
HS algorithm parameters are [5, 6]: 

• Harmony Memory Consideration Rate (HMCR) : 
the rate of randomly selected values from the 
memory (0≤HMCR≤1) 

• Harmony Memory Size (HMS) (that is, equivalent 
to population size),  

• Pitch Adjustment Rate (PAR) :	   the rate of altered 
values that was originally taken from the memory 
(0≤PAR≤1) 

• Number of Improvisations (NI) (that is, the 
maximum number of generations). 

• FW or BW: the width of the fret or bandwidth  

2) Step 2. Initialize randomly the Harmony Memory 
(HM). 

3) Step 3. Improvise a new harmony. 
4) Step 4. Update the harmony memory. 
5) Step 5. Repeat step 3 step 4 until the satisfaction of 

the termination criterion.  

B. The Improved Harmony Search (IHS) 
In the Improved Harmony Search (IHS), Mahdavi [10] 

suggested that PAR increase linearly and FW decrease 
exponentially with iterations. Therefore, mathematic 

expressions were adapted into these parameters to follow 
the iteration change:  

PAR=(PARmax-PARmin)/(MaxItr) 
*currentIteration + PARmin   (1) 

 
FW=fwmax*exp(coef*currentIteration) (2) 
 
 coef=log(fwmin/fwmax)/MaxItr  (3)	  

C. The HS weakness 
Most of the decision variables in the new harmony are 

selected from the other vectors stored in Harmony Memory. 
In addition, the new harmony vector may have the 
opportunity to take a place in the memory after its fitness 
test. Then, this vector might influence the convergence 
speed of the HS to the global optimum. In simulation 
results, we note that the HM is stable in most of the time: 
the memory matrix is changed one time every 75 iterations, 
in average. So it does not provide a large variety of values to 
the next improvisation. Therefore, the HS has a low 
probability of generating a good-quality of the new harmony 
vector. 

To overcome this limitation in the HS, we have to 
incorporate a mechanism to create a wide variety of values 
in memory while respecting their allowable ranges. This 
mechanism must be dynamic, so that converges and 
indirectly guides the global algorithm to find its optimum. 
For these reasons, we try to inspire a new hybridization idea 
from other nature-inspired metaheuristic algorithms like 
Particle Swarm Optimization (PSO) and Differential 
Evolution (DE) algorithms. The common idea of these 
algorithms is to provide a new population at each iteration 
not only completely different but also closer to the 
optimum.  

The hybridization strategy is to simulate the HM vectors 
to the swarm particles performance of PSO and to the 
individuals’ evolution of DE. Therefore, we try to apply a 
new set of instructions on all vectors in memory to have a 
dynamic memory that fly at each iteration towards the 
optimal solution. In addition, it improves the population and 
generates each time a better range of values for the next 
improvisation.  

III. THE IHS HYBRIDIZED WITH PSO ALGORITHM 
This section contains a description of the Particle Swarm 

Optimization algorithm (PSO) and the process of 
hybridization between IHS and PSO algorithms. 

A. The Particle Swarm Optimization (PSO) 
The particle swarm optimization (PSO) is a population-

based metaheuristic algorithm. It was developed by 
Kennedy and Eberhart in 1995 [9]. Simulating the behaviors 
of bird flocking, the mean idea of PSO is that individuals, 
called particles, interact with one another while learning 
from their own experience. The system is initialized 
randomly with a population of solutions and searches for 



optimal solution by updating generations. They share the 
global best and gradually they move into better regions of 
the problem space [9]. All of particles have positions and 
velocities which direct the flying of the particles. They 
evaluated by the fitness values which computed by the 
optimized function. 

The PSO algorithm requires primitive mathematical 
operators for updating the particles positions ‘p’ and 
velocities ‘v’ as shown below [8]:  

vi
t+1 = vi

t + c1 * rand * (pbest i – pi
t)  

               + c2 * rand * (gbest i – pi
t) (4) 

    
pi

t+1 = pi
t + vi

t+1    (5) 

At each iteration, every particle is updated by following 
two "best" values. The first one is the local best and called 
‘pbest’. It is the best fitness value achieved by the particle. 
The second "best" is the global best and called ‘gbest’. It is 
the best fitness value obtained so far by any particle in the 
population. 

B. The hybridization between IHS and PSO 
From the early works on PSO, it is known that PSO 

algorithm have fast convergence behavior and characterized 
by its ability to perform very well in static and dynamic 
environments. The stochastic factors and the dynamic 
aspects of particle velocities can guide the system to the 
right areas of research in the workspace.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Flowchart of IHSPSO 

In this hybridization, we integrate the terminology of the 
PSO algorithm in the HS in order to limit the search time for 
the optimum. For better results, we choose to apply the 
hybridization on the Improved Harmony Search algorithm 
instead of the basic version because of its better 
performance. 

Indeed, we considered the memory vectors of IHS as 
particles of the swarm and the new memory values for new 
improvisation as the new positions reached by these 
particles. We added the ‘velocity’ parameter calculated for 
each particle according to the equation (4) announced in the 
PSO algorithm. For each iteration, we identified 'pBest' and 
'gBest', which correspond to the current particles generation 
and calculated the new positions in relation to the calculated 
velocities (see Figure 1). 

IV. THE  IHS HYBRIDIZED WITH DE ALGORITHM 
This section presents a general idea about the Differential 

Evolution algorithm (DE) and describes the new 
hybridization strategy between IHS and DE algorithm. 

A. Differential Evolution (DE) 
The Differential Evolution algorithm (DE) was proposed 

by Price and Storn in 1995 [14]. Its remarkable performance 
and effective approach as a global optimization algorithm 
on wide variety of fields of engineering has been 
extensively explored [1, 2]. It is a simple and 
straightforward strategy based on three operators: mutation, 
crossover and replacement [4]. 

• Mutation: 

There exist different mutation strategies. In one of the 
simplest forms of DE-mutation, for each target vector of the 
current population, three distinct vectors are sampled 
randomly. Then, the vector difference of randomly sampled 
population members is scaled (by the control parameter F in 
the range [0.4, 1]) and added to the basis vector to produce a 
mutant vector. 

• Crossover: 

After the mutation, a crossover operation comes into 
play. The crossover is applied with certain probability 
controlled by the Crossover rate (Cr ∈ [0, 1]). The crossover 
is a combination between the mutant vector and the target 
vector under consideration to generate a trial vector. 

• Selection: 

To keep the population size constant for future 
generations, the next operation of the algorithm calls 
selection. The goal of selection is to keep the best vector for 
the next generation. 

B. The  hybridization between IHS and DE 
The Differential Evolution was the second algorithm 

hybridized with IHS. It has very limited number of control 
parameters (Cr, F, and NP in classical DE). Although it used 
simple adaptation formulas for F and Cr without 
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- Calculate particle velocity according equation (4) 
- Update particle position according equation (5) 
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computational burden, it was a preferment and effective 
technique for solving optimization problems. 

In order to build an impact solution that covers the 
weakness found in the IHS, we applied the operators of 
mutation, crossover and selection on all vectors of memory. 
In fact, this treatment is designed to be made each iteration 
to change memory vectors from one generation to another 
and add the dynamic aspect to our algorithm. The vectors 
resulting from this treatment form a new range of values 
much closer to the global optimum for the future 
improvisation (see Figure 2). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Flowchart of IHSDE 
 
The IHS algorithm which is hybridized with DE 

(IHSDE) showed a better behavior than the one hybridized 
with PSO (IHSPSO) (see table II). As a consequence, the 
IHSDE was adapted as the best hybridized algorithm in this 
work. 

V. EXPERIMENTS 
The performance of IHSDE is evaluated and compared to 

the IHS, DE, PSO and IHSPSO using 25 tests Benchmark 
functions (table I) at 10 runs. The benchmark functions are 
the single objective optimization functions published in 
CEC 2005 [15]. 

A. Experimental setup 
The parameters of IHS are set as: PARmin=0.0001; 

PARmax=1.0; bwmin=0.0001; bwmax=1.0; HMCR=0.9; 
HMS=10. 
The parameters of DE are: CR=0.7; F=0.8; strategy = 1. 
The parameters of PSO are: C1 = 0.5; C2 = 1.5. 
 

TABLE I.  list of the Benchmark functions 
 

Benchmark 
function F Number F (x*) Dimension Range 

Sphère 1 0 2 [-5.12  5.12] 

Rosenbrock 2 0 2 [-5   10] 

Rastrigin 3 0 2 [-5.12  5.12] 

Griewank 4 0 2 [-600 600] 

Ackley 5 0 2 [-15 30] 

Beale 6 0 2 [-4.5 4.5] 

Booth 7 0 2 [-10 10] 

Bohachevsky 

8 0 2 [-100 100] 

9 0 2 [-100 100] 

10 0 2 [-100 100] 

Dixon & Price 11 0 2 [-10 10] 

Matyas 12 0 2 [-10 10] 

Sum Squares 13 0 2 [-10 10] 

Power Sum 14 0 4 [0 nbv] 

Zakharov 15 0 2 [-5   10] 

Perm 16 0 2 [-nbv nbv] 

Powell 17 0 4 [-4 5] 

Hump 18 0 2 [-5 5] 

Levy 19 0 2 [-10 10] 

Branin 20 0.397887 2 [-5 10;0 15] 

Easom 21 -1 2 [-100 100] 

Goldstein & 
Price 

22 3 2 [-2 2] 

Hartmann3 23 - 3.86278 3 [0,1] 

Michalewics 24 -1.8013 2 [0 pi] 

Shubert 25 -186.7309 2 [-10 10] 

 
There are also two stopping criteria are applied:  

• The maximum number of function iterations is 
reached. Here, it is set to 50000 times.  

• The difference of objective function values 
between the best solution found so far and the 
global optimal solution (i.e., error function value is 
smaller than 10-10).  

The optimization performance is quantitatively 
measured by the mean value and standard deviation of the  
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Memory (HM) 

Condition ? 
: : 

Satisfaction of the termination criterion 

Step3: Improvise a new harmony 

Step4-a: Update the harmony memory 
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False 

Stop 

Step4-b:  
Apply the mutation, crossover and selection 

operators of DE on HM vectors 
 

Step5 : 



best fitness achieved when an algorithm terminates over 10 
runs and  the spent time or number of function evaluations. 
An optimization algorithm is regarded as successfully 
solving the problem once it achieves the closest fitness to 
the global optimum faster. 

B. Results 
To compare the optimization performances of HS, IHS, 

DE, PSO, IHSPSO and IHSDE in terms of the mean value 
and standard deviation of the best mean as well as the 
number of evaluations  over 10 runs (TABLE I), 25 test 
Benchmark functions were tested. 

 
TABLE II.  Performances of IHS, DE, PSO, IHSPSO and 

IHSDE in terms of the mean value, evaluation number and 
standard deviation over 10 runs with benchmark functions. 

 

 

 
For each function, bold fonts in TABLE II, show which 

algorithm works more efficient and gives the best results.  
In this comparative study, our goal is to minimize the time 
to reach the global optimum respecting the given margin of 
error. So, we considered the algorithm that is closest to the 
global optimum for a minimum number of evaluations as 
the best. 

The techniques of mutation, crossover and selection of 
DE which adapted to IHS, accelerates the convergence of 
the algorithm and provides a guided sequence of steps. 
Therefore, the new algorithm IHSDE made the minimum 
number of evaluations (reduced time) to converge toward 
the global optimum in the most of cases (see TABLE II). 
The IHSDE usually demonstrates superior performances 

F 

IHS 
Mean 
NFEs 
STD 

DE 
Mean 
NFEs 
STD 

PSO 
Mean 
NFEs 
STD 

IHSPSO 
Mean 
NFEs 
STD 

IHSDE 
Mean 
NFEs 
STD 

F1 
4.5187e-011 

27249 
2.2447e-011 

3.5647e-011 
542 

2.5598e-011 

3.5471e-017  
703  

9.5916e-017 

4.2766e-011 
120 

2.2177e-011 

5.4639e-011 
67 

3.2006e-011 

F2 
7.8262e-011 

45282 
5226e-011 

2.7441e-005 
1592 

8.6768e-005 

1.5155e-012  
838  

4.1958e-012 

6.4911e-011 
520 

2.6834e-011 

4.2957e-011 
100 

4.1573e-011 

F3 
3.1741e-011 

41472 
2.4682e-011 

2.3335e-011 
1239 

1.9295e-011 

1.2896e-013  
1048  

3.4468e-013 

2.2750e-011 
420 

1.9708e-011 

2.9425e-011 
883 

1.3364e-011 

F4 
0.0064 
46790 
0.0035 

0.0022 
2238 

0.0036 

7.9936e-016  
924  

2.1335e-015 

0.0099 
50001 

0.00081 

0.0059 
48134 
0.0033 

F5 
1.0409e-006 

50001 
6.4476e-007 

5.6568e-011 
1145 

2.7565e-011 

6.1688e-012  
1227  

1.0185e-011  

5.1547e-011 
290 

3.1902e-011 

1.2516e-010 
109 

1.4546e-010 

F6 
5.0167e-011 

41291 
2.6516e-011 

3.9452e-011 
593 

3.6209e-011 

1.2750e-015  
766  

2.3848e-015   

4.6620e-011 
680 

3.4312e-011 

4.4427e-011 
70 

3.0559e-011 

F7 
5.0064e-011 

39312 
3.1562e-011 

3.2402e-011 
631 

3.2736e-011 

5.8775e-016  
735  

1.0494e-015 

4.1209e-011 
150 

1.1006e-011 

6.2687e-011 
60 

1.9567e-011 

F8 
4.5735e-011 

37803 
2.5542e-011 

2.3543e-005 
836 

7.2478e-005 

5.5511e-017  
1073  

1.1992e-016  

3.6915e-011 
191 

1.5552e-011 

6.0276e-011 
62 

2.3376e-011 

F9 
4.0769e-011 

35207 
2.5687e-011 

2.9646e-011 
736 

2.2654e-011 

2.0428e-015  
829  

4.9877e-015  

4.2349e-011 
178 

1.8318e-011 

3.8629e-011 
71 

2.9354e-011 

F10 
7.1071e-011 

43423 
2.3433e-011 

4.2578e-011 
748 

3.1568e-011 

2.7423e-015  
743  

5.9293e-015  

5.3170e-011 
210 

3.1223e-011 

4.6674e-011 
78 

3.1721e-011 

F11 
6.5146e-011 

40304 
2.6147e-011 

4.3527e-011 
524 

2.1346e-011 

4.5752e-017  
1706  

7.6523e-017 

4.0455e-011 
170 

3.1845e-011 

6.6922e-011 
68 

3.1177e-011 

F12 
5.7484e-011 

32023 
2.6410e-011 

5.1415e-011 
538 

2.6630e-011 

1.9354e-016  
833  

3.6419e-016 

3.8983e-011 
138 

3.1708e-011 

5.5197e-011 
63 

2.8096e-011 

F13 
4.4875e-011 

25797 
3.1514e-011 

5.0471e-011 
559 

2.3580e-011 

1.0713e-015  
701  

3.0459e-015 

8.3819e-012 
142 

8.1335e-012 

4.4596e-011 
56 

2.3300e-011 

F14 
6.2246e-004 

50001 
6.0806e-004 

0.0231 
2015 

0.0356 

2.2477e-004  
6206  

1.8162e-004 

1.9530e-004 
50001 

1.7184e-004 

9.8412e-011 
11383 

2.5298e-012 

F15 
6.2007e-011 

30447 
2.8584e-011 

4.5618e-011 
555 

2.4838e-011 

1.5952e-016  
716  

3.2267e-016 

5.5227e-011 
124 

2.6648e-011 

3.8127e-011 
56 

3.0953e-011 

F16 
3.0623e-011 

42261 
2.1013e-011 

3.0072e-011 
353 

1.8266e-011 

6.4035e-013  
789  

1.9929e-012 

3.7746e-011 
170 

2.2669e-011 

5.3011e-011 
73 

3.2755e-011 

F17 
1.0506e-006 

50001 
6.8446e-007 

1.0435e-005 
1490 

3.2996e-005 

5.2693e-008  
1442  

5.7791e-008 

9.9395e-011 
16350 

1.1230e-012 

5.9498e-011 
150 

4.0279e-011 

F18 
4.6511e-008 

50001 
1.5773e-012 

4.6510e-008 
2014 

7.0217e-017 

4.6510e-008  
770  

2.5746e-016 

4.6510e-008 
50001 

1.2162e-016 

4.6510e-008 
50001 

1.5392e-014 

F19 
 4.8289e-011 

2319 
3.4688e-011 

4.9483e-011 
519 

3.3277e-011 

3.7053e-016  
642  

8.9506e-016 

4.3066e-011 
128 

4.4756e-011 

5.5477e-011 
62 

2.7631e-011 

F20 
0.3979 
1508 

2.6631e-005 

0.3979 
272 

3.1654e-005 

0.3979  
1038  

0 

0.3979 
56 

4.4087e-005 

0.3979 
22 

3.5446e-005 

F21 
-1.0000 
26920 

3.2156e-011 

-1 
2013 

0 

-1  
934  

3.5108e-016 

-1.0000 
7228 

3.1157e-011 

-1.0000 
1097 

2.9920e-011 

F22 
3.0000 
45880 

3.8758e-011 

3.0000 
637 

3.0254e-011 

3.0000  
860  

2.6089e-014 

3.0000 
3378 

7.1556e-012 

3.0000 
97 

1.5357e-011 

F23 
-3.8628 
12572 

5.8627e-007 

-3.8628 
2016 

5.9212e-016 

-3.8628  
  854  

1.9918e-014 

-3.8628 
84 

4.7866e-007 

-3.8628 
63 

6.1683e-007 

F24 
-1.8013 

6157 
1.0107e-006 

-1.8210 
2013 

3.9165e-016 

-1.9988  
1714  

0.0018 

-1.8136 
304 

0.0057 

-1.8013 
52 

8.7174e-007 

F25 
-186.7309 

13663 
2.2569e-006 

-186.7309 
2014 

4.2369e-014 

-186.7309  
1013  

3.2819e-014 

-186.7309 
138 

2.0915e-006 

-186.7309 
1018 

1.6613e-006 



compared to IHS, DE, PSO and IHSPSO on test functions 
except for few cases.  

In the second level, the IHSPSO was given competitive 
results at those of IHSDE and even sometimes better. 

In the literature, there are other algorithms that have 
hybridization between HS and DE like DHS [3] and HSDM 
[12]. To evaluate IHSDE, it was compared with these 
algorithms with respect to each of 5 tests Benchmark 
functions (TABLE I). All of these algorithms run under the 
same conditions and parameters values: HMS = 50, HMCR 
= 0.98, PAR = 0.3, BW=0.01 
 

TABLE III.  Performances of HS, DHS, HSDM and IHSDE in 
terms of the mean value and standard deviation over 25 runs 
with 5 benchmark functions at 30 Dimension. 

 
Benchmark 

function 

HS 
Mean 
STD 

DHS 
Mean 
STD 

HSDM 
Mean 
STD 

IHSDE 
Mean 
STD 

Sphère 2.920e-05 
5.389e-06 

5.650e-02 
2.645e-02 

8.055e-06 
3.508e-05 

8.0211e-011 
1.5751e-011 

Rosenbrock 2.458e+01 
1.759e+01 

4.460e+01 
2.790e+01 

2.629e+01 
8.400e-01 

8.9012e-011 
4.1932e-012 

Ackley 4.001e-03 
2.954e-04 

6.169e-02 
1.326e-02 

4.395e-05 
1.552e-04 

9.3415e-011 
4.3594e-012 

Griewank 1.406e-02 
1.366e-02 

1.205e-01 
3.284e-02 

7.186e-04 
2.078e-03 

2.2098e-04 
0.0038 

Rastrigin 5.391e-03 
9.596e-04 

3.059e-02 
1.298e-02 

7.079e-05 
2.315e-04 

8.7346e-011 
9.6772e-012 

 

In this table, the value in bold fonts, which corresponds 
to the IHSDE shows that this algorithm reaches the best 
result in this comparison. The IHSDE proved its superiority 
for all existing algorithms and showed great performances 
with the 5 test benchmark functions. These results 
emphasize the strategy allowed for hybridization in this 
study. 

VI. CONCLUSIONS 
In this paper, different metaheuristic algorithms have 

been studied such as Harmony Search HS, Particle Swarm 
Optimization PSO and Differential Evolution DE. A new 
hybridization search procedure inspired by evolution 
concept and swarm behavior was developed. This 
hybridization has combined The Improved HS with PSO to 
result IHSPSO and with DE to result IHSDE. These 
algorithms are tested by the benchmark functions (CEC 
2005) and compared with each other and some other 
algorithm from the literature. The experimental results 
demonstrate that the hybridized Harmony Search algorithm 
IHSDE shows more efficiency and performing to reach the 
global optimum more rapidly.  
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