
Neurocomputing ] (]]]]) ]]]–]]]
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

adel.alim

Pleas
neur
journal homepage: www.elsevier.com/locate/neucom
Hierarchical multi-dimensional differential evolution for the design of beta
basis function neural network
Habib Dhahri a,n, Adel M. Alimi a, Ajith Abraham b,c

a REsearch Group on Intelligent Machines (REGIM), University of Sfax, National School of Engineers (ENIS), BP 1173, Sfax 3038, Tunisia
b Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Czech Republic
c Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, WA, USA
a r t i c l e i n f o

Article history:

Received 15 December 2011

Received in revised form

28 March 2012

Accepted 6 April 2012
Communicated by V. Palade
of individuals of the population multi-dimensions is the number of beta neural networks. The
Keywords:

Hierarchical multi-dimensions differential

evolution

Beta basis function neural networks

Time series prediction

Identification system
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.04.008

esponding author. Tel.: þ216 97 473 672.

ail addresses: habib.dhahri@ieee.org, habibdh

i@ieee.org (A.M. Alimi), ajith.abraham@ieee

e cite this article as: H. Dhahri, et al
al network, Neurocomputing (2012)
a b s t r a c t

This paper proposes a hierarchical multi-dimensional differential evolution (HMDDE) algorithm, which

is an automatic computational frame work for the optimization of beta basis function neural network

(BBFNN) wherein the neural network architecture, weights connection, learning algorithm and its

parameters are adapted according to the problem. In the HMDDE-designed neural network, the number

population of HMDDE forms multiple beta networks with different structures at the higher level and

each individual of the previous population is optimized at a lower hierarchical level to improve the

performance of each individual. For the beta neural network consisting of m neurons, n individuals

(different lengths) are formed in the upper level to optimize the structure of the beta neural network.

In the lower level, the population within the same length is to optimize the free parameters of the beta

neural network. To evaluate the comparative performance, we used benchmark problems drawn from

identification system and time series prediction area. Empirical results illustrate that the HMDDE

produces a better generalization performance.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The neural networks have been effectively applied in many
areas, such as time series prediction [21,22,24], pattern recogni-
tion [27], approximation function [28], etc. Among the variety of
artificial neural networks, the beta basis function neural network
(BBFNN) represents an interesting alternative in which we can
approximate any function [1]. The BBFNN network is a three layer
feed-forward network that generally uses a linear transfer func-
tion for the output units and a non linear transfer function
(the beta function) for the hidden units. In spite of a number of
advantages of BBFNN such as better approximation capabilities
[30], faster learning algorithms and simple network topologies;
especially the determination of the optimal number of hidden
nodes is the most critical task. The development of BBFNN still
involves difficulties in optimizing the topology of the network
structure (the number of nodes). Today, hybridization in soft
computing is becoming a promising research field of computa-
tional intelligence focusing on synergistic combinations of multi-
ples soft computing methodologies an intelligent system. In order
to overcome the soft computing method [2–4], the investigation
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of hybrid approaches will be necessary. In particular, in order to
overcome the challenge in developing the neural network, the
evolutionary algorithm is applied to optimize the structure of the
neural network system. There are several works that deal the
problem of automatic neural network design [5–8].

Methods found in literature can be divided into two classes:
(1)
sion
j.neu
Methods in which the number of nodes must be given a
priori; after this, computing the remaining neural networks’
parameters (the centers and the widths) is done choosing
randomly from the training set or performing any kind of
clustering method with them [9]. In this case, the optimal
results cannot be guaranteed, and often consumes time to
find the acceptable results.
(2)
 Methods that automatically find the number of nodes and the
remaining parameters. Several techniques have been proposed
for this, such us the pruning algorithm [10–11], the growing
algorithm [12–14] and the evolutionary algorithms [15]. The
applying of evolutionary algorithms to construct neural nets is
also well known in the literature. The most representative
algorithms include Genetic Algorithms (GA) [16,39,40], Particle
Swarm Optimization (PSO) [18,19,23,26], Flexible Neural Trees
[41,42] and the method of Differential Evolution (DE)
[17,20,22,24,25]. The DE algorithm has been shown to perform
better than the Genetic Algorithm (GA) or the Particle Swarm
Optimization (PSO) over several numerical benchmarks [26,29].
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The major drawback of the DE variants including the basic
method is that they can only be applied to a search space with fixed
Fig. 1. Architecture of the BBFNN.
dimensions. However, in the context of BBFNN, the optimum
dimension (the optimum nodes number) is unknown and should
be determined within the DE process. In order to address this
problem, in this work, we present a multi-dimensional DE (MDDE),
which negates the need of fixing the dimension of the solution space
in advance. Therefore, no assumption is made about the number of
nodes. In this paper; we propose a hierarchical differential evolution
for the design of the based beta basis function neural network. In the
upper level, the MDDE focuses on determining the optimum dimen-
sion that naturally corresponds to near-optimal BBFNN architecture.
At the lower level, we use the Differential Evolution with a fixed
dimension to search the others beta neural parameters (centers,
widths and forms parameters). The weight parameters that connect
the hidden layer with the output layer are determined by computing
the pseudo-inverse matrix. In order to validate the performance of
the proposed scheme, the developed BBFNN are used to predict four
benchmarks examples. The comparison of the proposed method
with the others existing results, in the bibliography, we find that
HMMDE–BBFNN can predict the time series satisfactorily with the
automatically selection of the model structure.

The remainder of this paper is organized as follow: Section 2
reviews some approaches to train the BBF neural network. Section
3 introduces hierarchical differential evolution for the design of
BBFNN, while Section 4 provides a set of experimental results to
predict the four time series prediction. Finally, the work is
concluded in Section 5.
2. Related work

This section first describes the basic concept of the BBFNN to
be designed in this study. The basic concept of DE employed in
BBFNN optimization is then described.

2.1. The beta basis function neural network (BBFNN)

In this section, we want to introduce the beta basis functions
neural network that will be used in the remainder of this paper.
The BBFNN usually consists of three layers [1]: the input layer, the
BBF layer (hidden layer) and the output layer. The input layer
simply transfers the input vector x¼ ½x1,x2,:::,xn�

T through scalar
weights to the next layer. Thus the whole input vector appears to
each neuron in the hidden layer. Each hidden nodes perform the
beta basis function over the incoming vector that appears at the
input of each BBFNN neuron. The output layer yields a vector
y¼ ½y1,y2,:::,ym�

T for m outputs by linear combination of the
outputs of the hidden nodes to produce the final output. Fig. 1
presents the structure of a single output of BBF network; the
network output can be obtained by

y¼ f ðxÞ ¼
Xn

i ¼ 1

wiBiðx,c,s,p,qÞ, 1r irn ð1Þ

Besides the center c, the beta basis function may also present a
width parameter s, which can be seen as a scale factor for the
distance (x�c) and the parameter forms p and q.

The BBF network can be regarded as feed-forward neural
network with a single layer of hidden units, whose responses
are the outputs of the beta basis functions. Fig. 2 shows the effect
of parameters forms to the beta function. The latter Biðx,ci,si,pi,qiÞ,
i¼1,y,n, is defined by:

bðxÞ ¼
1þ ðpþqÞðx�cÞ

sp

h ip
1� ðpþqÞðc�xÞ

sq

h iq
if xA �x0,x1½

0 else

8<
: ð2Þ
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
neural network, Neurocomputing (2012), http://dx.doi.org/10.1016/
where p40, q40, x0 and x1 are the real parameters, such as
x0ox1 and

c¼
px1þqx0

pþq
ð3Þ

In the multi-dimensional case, the beta function is defined by

bðc,s,p,qÞðxÞ ¼
Yi ¼ d

i ¼ 1

biðci,si,pi,qiÞðxÞ ð4Þ

where d is the dimension of the beta kernel.
The BBF neural network is usually trained to map a vector

xkARn into vector ykARn0 where the pairs ðxk,ykÞ, 1rkrM from
the training set and R is set of real numbers. If this mapping is
viewed as a function in the input space Rn, learning can be seen as
a function approximation problem. According to this point of
view, learning is equivalent to finding the surface in a multi-
dimensional space that provides the best fit to the training data.
Generalization is therefore synonymous with interpolation
between the data points along the constraint surface generated
by the fitting procedure as the optimum approximation to this
mapping.

Alimi is the first to investigate the use of the beta basis
function in the design of neural network as activation functions
in artificial neural network [1]. In [30], the authors proved that
BBF networks with one hidden layer are capable of universal
approximation. Nevertheless, the BBF networks are capable of
approximating arbitrarily well any function; also have the best
approximation property.

The performance of the BBF neural network depends on the
number of units of beta basis functions, their shapes, the para-
meters forms, and the method used to determine the associative
weight matrix. Simon [31] classified the existing learning strate-
gies for neural network as follows: (1) learning with a fixed
number of units and centers selected randomly from the training
data; (2) supervised learning for the selection of the centers of
the network; and (3) unsupervised learning for the selection of
the fixed number of units. In this paper, we are going to use the
second strategy.

One of the main problems related to the development of neural
network based system is the application of suitable learning algo-
rithm to adjust the network parameters. The BBF network presents
the following adjustable parameters: the position of BBFs centers ci,
the widths si of the BBFs, the form parameters of the BBFs pi and qi

and the output weights wi.
There are a number of proposals on how to define these

parameters in the literature. One first idea is to fix the number of
nodes and use a gradient descent method to adjust the parameters
[32], in a manner very similar to the error back-propagation
sional differential evolution for the design of beta basis function
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Fig. 2. The Beta plot in one dimension.
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algorithm, often used with MLPs. Nevertheless, training the BBF
network in such a way seems somewhat wasteful. There are
several interesting approaches that exploit this potential.
Although slightly different, all of them share the same idea: the
definition of the hidden layer is considered as the major task,
since the output weights can be computed according to linear
optimization techniques [32]. In [33] the authors used the con-
structive method that allows BBF neural network to grow by
inserting new units in the feature space where the mapping needs
more details. In [17,18,20], the major task considered in these
works is to optimize the beta parameters with a fixed number of
nodes. Consequently the problem of determination of BBF archi-
tecture will be treated in this paper.

2.2. The basic DE algorithm

The discovery of differential evolution was introduced by Storn
[17] as a population based stochastic search process. Like other
evolutionary algorithms, DE is very effective for solving optimiza-
tion problems with non-smooth objective functions. The DE
algorithm was successfully applied in the optimization of some
well-known nonlinear, non-differentiable and non-convex func-
tions. DE uses a greedy and less stochastic approach with floating
point coding in problem solving rather than the other evolution-
ary algorithms, such as genetic algorithms, evolutionary program-
ming and evolution strategies. In DE, a candidate solution for a
specific problem is called an individual or a chromosome and
consists of a linear list of genes. Each individual represents a point
in the search space, and hence a possible solution to the problem.
A population consists of a finite number of individuals. Each
individual is decided by an evaluating mechanism to obtain its
fitness value. Based on this fitness value and undergoing DE
operators, a new population is generated iteratively with each
successive population referred to as a generation. The fitness of an
offspring is one-to-one competed with that of the corresponding
parent in DE. The DE algorithm uses simple arithmetical operators
with the classical operators of recombination, mutation and
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
neural network, Neurocomputing (2012), http://dx.doi.org/10.1016/
selection to evolve from a randomly generated starting population
to a final solution. Basically, the weighted difference between two
individuals is added to a third individual in a population. This way,
no separate probability distribution has to be used, which makes the
scheme completely self-organizing.

The potentialities of DE are its simple structure, easy use
and local searching property. This drawback could be overcome by
employing a larger population. However, by doing so, much more
computation time is required to estimate the fitness function.

Accordingly, the general pseudo-code of DE algorithm can be
given as follows:

Step 1: Parameters setup:

Choose the parameters of population size, the boundary
constraints of optimization variables, the mutation factor (F),
the crossover rate (Cr), and the stopping criterion of the
maximum number of generations.

Step 2: Initialization of the population
The initial population is generated uniformly distributed
randomly;
For j¼1 to NP do

Pij ¼ ajþrandiðbi�aiÞ
ð5Þ

end
Step 3: Research of the best individual

While convergence criteria not yet met
For i de 1 to NP do
Select three parents Pr1, Pr2 randomly and Pbest from the
current population where r1ar2:

Vi ¼ PbestþFðPr1�Pr2Þ
ð6Þ

where F is real number in [0,1]
For j¼1 to d do

Uij ¼ f
Vij, if randð0,1ÞrCr

Pij otherwise ð7Þ

end
Evaluate the trial vectors Ui

if ðf ðUiÞr f ðPiÞÞ
ð8Þ
sional differential evolution for the design of beta basis function
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Fig. 4. Hierarchical multi-dimensional differential evolution.
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Pi¼Ui

end
Select the fittest individual from P
End

3. The HMDDE technique for automatic BBFNN design

In this section, we will first introduce the MDDE technique,
which presents an important improvement over DE classic
variant. The next unit explains its use for the BBFNN.

3.1. MDDE algorithm

Instead of operating at a fixed dimension N, the MDDE
algorithm is designed to seek the optima dimension. In the DE
algorithm, the main idea is to construct, at each generation a
mutant vector. This mutant vector is constructed through a
specific mutation operation based on adding difference between
randomly selected elements of the population to another ele-
ment. For example one of most used variant to construct a mutant
vector, x, starting from a current population is based on the
following rule: x¼ x1þFUðx2�x3Þ where x1A IRn1, x2A IRn2and
x3A IRn3 are selected from the m individuals of the population
and F40 is a scaling factor. In the multi-dimensions of DE, we
select three chromosomes from the population to generate a new
individual to add diversity to the population and to provide
mechanism to favor the exploration of the search space. The
difference based on the two vectors x2 and x3 is not allowed
because these vectors are not in the same dimension. This opens
the question of exactly how to create the new individual from
chromosomes with different lengths.

In order to make this hypothesis feasible, we must take into
account if we pass from the dimension i to the dimension j (ioj), we
add (j� i) axis of supplementary coordinates that will be orthogonal
to the i axes. In other words, we project the vectors on the space
where the dimension is the maximum size of the three vectors.

Fig. 3 shows a sample of projection operator P which can be
expressed as follows:

PðxiÞ ¼ ½xiUzerosð1,maxðx1,x2,x3Þ�lðxiÞÞ�, 1r ir3 ð9Þ

Where [ � ] is a vector, zeros is zeros array, max is the maximum
of the three vectors and l is the length of the vector xi. Once the
projection P operator is applied, the classical variant of differen-
tial evolution DE is used.

3.2. MDDE for BBFNN

As depicted in Fig. 4, we conceived a hierarchical differential
evolution algorithm for the design of the beta basis function neural
network composed by two levels. The upper level is composed by
heterogeneous DE (different sizes) and the lower level by homo-
genous DE (same size). At the higher level, as a stochastic search
process in multi-dimensional search space, MDDE seeks for optimal
networks in architecture space. The MDDE is used to build the
BBFNN description or net topology, i.e., to choose the number of
neurons. This level handles the task of updating the population for
Fig. 3. Projection operato

Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
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neural network–neuron optimization. The whole population of
differential evolution algorithm presents all networks configura-
tions. Each individual of the population defines a beta basis function
neural network. Once optimizing the topology of BBFNN, the best
individual of the higher population will be sent to DE at the lower
level to optimize the other neural parameters, i.e., centers widths
and form parameters. At the second level, the DE algorithm is used
to train BBFNN by adjusting the neural parameters with individuals
with the same size. After a predefined number of generations, the
inner DE returns the best individuals that represent the optimal
configuration of BBFNN. Accordingly, the HMDDE method can be
expressed as follows:

Step (1): Initialize the DE parameters.
Step (2): Encode all the parameters into the chromosomes
using the proposed encoding scheme.
Step (3): Initialize population pop randomly of NP individuals.
Step (4): Compute the connection weights by pseudo-inverse
technique.
Step (5): Find the fittest individual. The fitness evaluation is
computed as follows: F ¼ af 1þbf 2 a,bA ½0, 1� where f1 mea-
sures the performance of BBF neural network on the training
data (e.g., root mean square error: RMSE), f2 measures the
complexity of BBF neural network and a, b are a user specified
fitness coefficient that allow a trade-off between the objec-
tives, specifically, f 2 ¼Nn=Nmax, where Nn is the actual number
r in one dimension.

sional differential evolution for the design of beta basis function
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of nodes and Nmax is the maximum number of nodes. (In the
simulation, we use a¼0.95 and b¼0.05.)If the specified
number of iterations iterN1 exceeded in the upper level go to
Step (a) else go to Step (6).

Step (a): Choose randomly the initial population; each
individual of this population represents a candidate BBF
neural network where the number of neurons is equal to
one of the best solution in Step (5).
Step (b): Encode all the parameters into the chromosomes.
Step (c): Generate a population pop randomly.
Step (d): For each candidate of the population, select the
random variables r1,r2,r3Af1,2,:::,NPg.
Step (e): Apply mutation operator to each candidate in the
population Eq. (6).
Step (f): Apply crossover operator that each vector from the
population is recombined with a mutant vector to produce
a trial vector Eq. (7).
Step (g): Apply a selection operator according to Eq. (8).
Step (h): Compute the connection weights by pseudo-
inverse technique.
Step (i): Find the fittest individual by RMSE performance.
Step (j): If the performance of the best individual is less
than the predefined goal then go out else return to Step (d).
Step (6): For each candidate of the upper population (higher
level), select the random variables r1,r2,r3Af1,2,:::,NPg.
Step (7): Apply a projection operator specifically by Eq. (9).
Step (8): Apply the step from Step (d) until Step (i).
Step (9): If the performance of the best individual is less than
the predefined goal then go out else return to Step (6).

3.3. Encoding scheme of BBFNN

Once applying the DE algorithm to design the BBFNN network,
the main key is to encode the BBF neural network into the
chromosome with an efficient approach. In order to define the
BBFNN, the topology and the network parameters should be
specified. In the proposed encoding scheme consists simply of
the second parts (network parameters) because the first part
(neurons number) is determined at the upper level of HMDDE.
Here, we adopt the real coded DE and each sequence of neural
parameters represents one node. Each chromosome represents a
candidate BBFNN neural network. Since the weights parameters
are computed by the pseudo-inverse technique, therefore it is
only necessary to encode the four parameters, i.e., centers ci,
widths si, and form parameters pi and qi which are necessary to
represent the beta form of BBF.
Table 1
Parameters of HMDDE.

Total number of iterations 10,000

Population size, NP 50

Mutation constant ,M 0.7

Crossover constant, Cr 0.6

Wight factor, F 0.7

Maximum number of nodes 20

Form parameters, P, Q [0, 5]
4. Experimental results

In order to evaluate the performance of the proposed algo-
rithm, a number of simulations studies are carried out for various
benchmark problems. The aim is to test the ‘‘optimality’’ of BBF
neural network and the ‘‘generalization’’ ability whilst performing
comparative evaluations against several popular techniques with
the latter. These problems are Mackey-Glass, identification and
control problem and Box–Jenkins time series; these problems are
taken from literature in order to be able to make a direct
performance comparison.

For comparison of the proposed algorithm with the basic PSO
and relevant modified PSO algorithm using the speciation, both
PSO and CPSO use a global version of PSO constriction for velocity
update. In CPSO, the number of swarm populations is equal to
three numbers of rules, on the other side, in SPSO, each particle
represents a whole fuzzy system. Some of the advanced PSO
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
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algorithms are also compared with the HMDDE. These algorithms
include HPSO–TVAC, HGAPSO and PSO–CREV. For these algo-
rithms, the coefficients used to update the particle velocities are
the same [23]. The performance of HMDDE is also compared with
the advanced genetic algorithm. The MOGUL–TSK [37] is an
iterative rule learning approach. The software knowledge extrac-
tion based on evolutionary learning (KEEL) [38] is used to
implement the MOGUL–TSK. For the MOGUL–TSK parameter
setting, the population size is the same as the HCMSPSO and is
equal to 50.

The HMDDE is also compared with DE–NN and ODE–NN
(Example 2 and 4) in the system identification. For DE and ODE
parameter setting, the population size is 50, the upper and lower
bounds of weights are [0, 1], the mutation constant M is 0.6, the
crossover constant C is 0.5 and the jumping probability Jr is 0.3.

Example 1. Mackey-Glass time series prediction

In this sub-section, we describe some applications of the above
beta basis function neural network architecture to infer the
models associated with some chaotic time series. We consider
the Mackey-Glass [34], one of the most popular and dynamical
systems defined as

dðxðtÞÞ

dt
¼

axðt�tÞ
1þxcðt�tÞ

�bxðtÞ ð10Þ

The resulting series presents a chaotic behavior and is recog-
nized as a reference problem in the study of neural networks
generalization ability. Unfortunately, the exact configuration of
the experiment varies from one work to another. Here, the initial
values of times series are fixed as follows a¼0.2, b¼0.1 and
t¼17.

In this paper, the neural network BBFNN is set to predict
x(tþ6) based on x(t), x(t�6), x(t�12) and x(t�18). A total of 1000
patterns are generated from the Eq. (10), where the first 500
patterns are selected as the training data points to build the
proposed HMDDE–BBFNN of Mackey Glass time series, and the
last 500 samples as the testing data of the proposed model.

In the proposed HMDDE, the parameters (Table 1) are set as,
the population size to 50, the number of evolving generation to
10,000, the beta parameters are defined as the center ci, the
spread si are limited to the upper and lower bound of the input,
the form parameters in the interval [0, 5] and the maximum
number of nodes is defined as 20.

In order to overcome the random initialization problem of the
parameter, a total of 30 runs were indecently performed with the
randomly generated initials parameters. Among the 30 runs, the
number of nodes and the root mean square error (RMSE) of
training and testing data obtained using the proposed algorithm
are listed in Table 2. After the training, the performance of
HMDDE is compared with the reported performance of different
models that were applied to the same prediction problem [23].
Table 2 shows the comparison of the proposed method to the
PSO-based algorithms and the GA-based algorithms. As shown in
Table 2, we obtain over 30 runs, the average value for the number
of nodes as four and the average RMSE testing data is 0.017. As
observed, the HMDDE achieves the lowest testing and training
sional differential evolution for the design of beta basis function
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Table 2
Comparison of different models for Mackey-Glass time series.

Methods CPSO SPSO HPSO–TVAC HGAPSO PSO–CREV MOGUL–TSK MOGUL–TSK HCMSPSO HMDDE–BBFNN

Neurons number 470 470 470 470 470 4.271.4 11.871.5 471.5 470
Training RMSE 0.0199 0.0428 0.0345 0.0354 0.0664 0.0444 0.0213 0.0095 0.0094
Testing RMSE 0.0322 0.0450 0.0477 0.0478 0.0777 0.0450 0.0253 0.0208 0.0170

Results are taken from [23].
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Fig. 5. Identification of the Mackey-Glass time series.
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error. The average test error of HCMSPSO with about 4 nodes is
smaller than those of the PSO based algorithm, it is still larger
than that of the HMDDE with four nodes. Fig. 5 shows the best
predicted and desired values for both the training and testing
data. Fig. 6 shows the training RMSE for each evaluation.

Example 2. Nonlinear plant control

In this example, the plant to be controlled is expressed by

ypðtþ1Þ ¼
ypðtÞ½ypðt�1Þþ2�½ypðtÞþ2:5�

8:5þ½ypðtÞ�
2þ½ypðt�1Þ�2

þuðtÞ ð11Þ

The same plant is used in [22]. The current output of the plant
depends on two previous outputs values and one previous input
values. The input u(k) was assumed to be random signal uni-
formly in the interval [�2, 2]. The identification model to be in
the form of:

ypiðtþ1Þ ¼ f ðypðtÞ,ypðt�1ÞÞþuðtÞ ð12Þ

where f ðypðtÞ,ypðt�1ÞÞ is the nonlinear function of ypðtÞ and
ypðt�1Þ which will be the inputs for HMDDE–BBFNN neural
system identifier. The output from neural network will be ypi. In
this experiment, 500 training patterns are generated to train the
BBFNN network and 500 for the testing data. After training, the
following same test signal u(k) of the other compared models is
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
neural network, Neurocomputing (2012), http://dx.doi.org/10.1016/
used for testing the performance of BBFNN models:

uðtÞ ¼
2 cosð2pt=100Þ if tr200

1:2 sinð2pt=20Þ if 200otr500

(
ð13Þ

The RMSE value is taken as the performance measure criterion.
The parameters of HMDDE were chosen as the previous example.
Fig. 7 shows the actual and predicted output of the plant for the test
signal with the beta BBFNN model. Fig. 8 gives the identification
error of the 500 data points. From the figures it is clear that the
desired output and the identified by HMDDE is nearly the same.

Table 3 gives the comparison of performance of HMMDE for the
design of beta basis function neural network to DE based methods for
Artificial Neural Network. The comparison of these methods is
applied in terms of root mean squared error (RMSE). From the results
it is clear that the proposed HMDDE algorithm has a root mean
squared error test (RMSE) of 0.110 with four beta basis function
neural net. Finally it is concluded that the proposed HMDDE is having
a better identification performance than that of the other approaches.

Example 3. Nonlinear—plant identification

The HMDDE–BBFNN is applied to the model of the following
nonlinear plant:

y¼ ð3ex2�1Þtanhðx1Þþ
2

30
ð4þex2Þsinðpðx1þ

4

10
ÞÞ ð14Þ
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Fig. 8. HMDDE identification error.

Table 3
Comparison of training and testing errors.

Input Training error (RMSE) Testing error (RMSE)

DE ODE HMDDE DE ODE HMDDE

y(k),y(k�1) u(k) 0.0207 0.0190 0.0190 0.1186 0.11370 0.110

Results are taken from [21] and [22].
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Fig. 7. HMDDE identification performance.

Table 4
Comparison of different models for system identification example.

Methods HPSO–TVAC HGAPSO PSO–CREV MOGUL–TSK MOGUL–TSK HCMSPSO HMDDE–BBFNN

Neuron number 3.670.9 3.670.9 3.670.9 3.771.13 27.972. 13.670.9 3.44
Training RMSE 0.0145 0.0249 0.0539 0.679 0.0054 0.0052 0.0048
Testing RMSE 0.0283 0.0312 0.0761 0.734 0.058 0.0064 0.0050

Results are taken from [23].
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where the domains of x1 and x2 are both in [�1, 1]. The input of
BBFNN is x1 and x2. A threefold cross-validation procedure is
performed. For each cross-validation dataset, the learning process
is repeated for ten runs, i.e., there are a total of 30 runs for
statistical analysis.

Table 4 shows the comparison performance of the proposed
model to genetic based-algorithm andother advanced PSO based-
algorithms in terms of number of neurons number, training RMSE
and testing RMSE. The results in Table 4 show that the average
test error and the average of number of neurons of HMDDE–
BBFNN. The performance of HMDDE is better than that of
HCMSPSO and those PSO-based algorithms and this advanced is
in error fitness and also in number of neurons. Results show that
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
neural network, Neurocomputing (2012), http://dx.doi.org/10.1016/
applying the HMMDE for the design of the beta basis function
neural network improves the generalization error. Fig. 9 shows
the identification performance of the plant whereas the Fig. 10
shows the error identification.

Example 4. Box and Jenkins’ gas furnace problem

In this section, the proposed HMDDE–BBFNN are applied to
the Box–Jenkins time series data (gas furnace data), which have
been intensively studied as a benchmark problem in previous
literature [35,36]. The data set originally consists of 296 data
points [y(t), u(t)]. For the design of the experiment, the delayed
term of the observed gas furnace process data, y(t), is used as
sional differential evolution for the design of beta basis function
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Table 5
Comparison of training and testing errors of Box and Jenkins.

Input Testing error (RMSE) Training error (RMSE)

DE ODE HMDDE DE ODE HMDDE

y(t�1), u(t�3) 0.4400 0.4194 0.2276 0.1501 0.1411 0.1328
y(t�3), u(t�4) 0.7838 0.7773 0.4224 0.3402 0.2850 0.0210
y(t�2), u(t�4) 0.6733 0.6602 0.3200 0.3256 0.2898 0.1365
y(t�1), u(t�2) 0.4906 0.6801 0.2334 0.2909 0.2924 0.1735
y(t�1), u(t�4) 0.5430 0.5132 0.3745 0.2991 0.2926 0.2411
y(t�4), u(t�4) 12.259 0.8894 0.4549 0.3274 0.3428 0.1594
y(t�2), u(t�3) 1.1340 0.7199 0.2700 0.2968 0.3051 0.1702
y(t�1), u(t�1) 0.6183 0.6056 0.2577 0.4638 0.4151 0.1598
y(t�4), u(t�3) 1.2405 1.2771 0.6148 0.7266 0.4301 0.1921
y(t�1), u(t�6) 0.8469 0.8410 0.6638 0.6012 0.5661 0.6619
y(t�3), u(t�3) 1.0067 1.0347 0.2521 0.5172 0.5176 0.1600
y(t�2), u(t�2) 0.9889 0.9753 0.2773 0.6314 0.6261 0.1615
y(t�1), u(t�5) 0.6873 0.6518 0.5595 0.6220 0.6303 0.3333
y(t�4), u(t�5) 1.0149 0.9698 0.0203 0.7038 0.6373 0.0178
y(t�2), u(t�1) 1.8368 1.2726 0.2759 0.8934 0.6844 0.1960
y(t�2), u(t�5) 0.9176 1.1808 0.4021 0.7222 0.6804 0.2165
y(t�3), u(t�5) 0.9536 1.0470 0.2307 0.7138 0.7338 0.1346
y(t�3), u(t�2) 1.8184 1.4138 0.2760 0.8766 0.8600 0.2128
y(t�4), u(t�6) 1.7628 1.4677 0.2635 1.3988 1.1126 0.1379
y(t�2), u(t�6) 1.3352 1.2639 0.5590 1.6264 1.1945 0.3389
y(t�4), u(t�2) 1.6725 1.6377 0.2737 1.1799 1.1963 0.2152
y(t�3), u(t�6) 27.468 1.4641 0.4027 1.2063 1.2424 0.2175
y(t�3), u(t�1) 1.7123 1.6475 0.2803 1.5725 1.2702 0.2135
y(t�4), u(t�1) 2.0821 2.0217 0.2695 1.4250 1.4352 0.2270

Results are taken from [21] and [22].
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system input variables made up of by ten terms given as follows:
y(t�1), y(t�2), y(t�3), y(t�4), y(t�5), u(t�1), u(t�2), u(t�3),
u(t�4), and u(t�6). Consequently, the effective number of data
points is reduced to 296 providing 100 for training and 190
samples for testing. Here we have taken two inputs for simplicity
one is from furnace output and other is from furnace input so we
Please cite this article as: H. Dhahri, et al., Hierarchical multi-dimen
neural network, Neurocomputing (2012), http://dx.doi.org/10.1016/
have build 24 models of different input and output. The criterion
used was the Root Mean Square Error (RMSE). Each case is trained
for 2000 epochs and the number of neurons belongs to the
interval [2,10]. Table 5 gives the training and testing perfor-
mances of these 24 models. As can be seen from this table,
HMDDE–BBFNN model is powerful for Box–Jenkins process in
training. Compared with the recent results presented in [21,22],
we can see that the proposed algorithm can achieve accuracy than
the result in [21,22] with a smaller number of nodes.

The training and testing gas furnace process data are shown in
Fig. 11. Fig. 12 shows the predicted time series and the desired
time series. From the Table 5, it is clear that HMDDE is having less
training and testing errors in comparison to DE, ODE counterpart.
The RMSE for testing turned out to be the least for 24 cases in
HMDDE–BBFNN approach.
5. Conclusions

This paper proposed the hierarchical multi-dimensional differ-
ential evolution (HMDDE) algorithm for optimization of beta basis
function neural network (BBFNN). The design of the topology of
BBFNN is defined automatically at the higher level of the pro-
posed algorithm, whereas in lower level, we optimize the free
parameters of beta neural network. The optimization of neural
parameters is based on differential evolution. The second con-
tribution of this work is to propose the multi-dimensional
differential evolution, which represents the key point in deter-
mining the optimal number of beta basis function neural network.
Several simulation studies are carried out for both identification
and control purposes. The plant models are taken from the
literature to enable a direct performance comparison. In both
the identification and the control cases, the performance is much
better, resulting in smaller RMSE values, with a smaller number of
nodes. Future works on the topic includes the use of Particle
sional differential evolution for the design of beta basis function
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Swarm Optimization (PSO) for the optimization of BBFNN
parameters.
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[37] R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, F. Herrera, Local identification
of prototypes for genetic learning of accurate TSK fuzzyrule-based systems,
Int. J. Intell. Syst. 22 (2006) 909–941.
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