
Hybrid Particle Swarm - Evolutionary
Algorithm for Search and Optimization

Crina Grosan1, Ajith Abraham2, Sangyong Han2 and Alexander Gelbukh3

1Department of Computer Science
Babeş-Bolyai University, Cluj-Napoca, 3400, Romania

2School of Computer Science and Engineering
Chung-Ang University, Seoul 156-756, Korea

3Centro de Investigacin en Computacin (CIC)
Instituto Politcnico Nacional (IPN), Mexico

ajith.abraham@ieee.org, cgrosan@cs.ubbcluj.ro, hansy@cau.ac.kr,

gelbukh@gelbukh.com

Abstract. Particle Swarm Optimization (PSO) technique has proved
its ability to deal with very complicated optimization and search prob-
lems. Several variants of the original algorithm have been proposed. This
paper proposes a novel hybrid PSO - evolutionary algorithm for solving
the well known geometrical place problems. Finding the geometrical place
could be sometimes a hard task. In almost all situations the geometrical
place consists more than one single point. The performance of the newly
proposed PSO algorithm is compared with evolutionary algorithms. The
main advantage of the PSO technique is its speed of convergence. Also,
we propose a hybrid algorithm, combining PSO and evolutionary algo-
rithms. The hybrid combination is able to detect the geometrical place
very fast for which the evolutionary algorithms required more time and
the conventional PSO approach even failed to find the real geometrical
place.

1 Introduction

Evolutionary Algorithms (EA) use a population of potential solutions (points) of
the search space. These solutions (initially randomly generated) are evolved using
different specific operators which are inspired from biology. Through cooperation
and competition among the potential solutions, these techniques often can find
optima quickly when applied to complex optimization problems.

There are some similarities between PSO and Evolutionary Algorithms:

– both techniques use a population (which is called swarm in the PSO case)
of solutions from the search space which are initially random generated;

– solutions belonging to the same population interact with each other during
the search process;

– solutions are evolved (their quality is improved) using techniques inspired
from the real world.

Even then, there are still many differences between these two techniques.
In what follows, we will apply both techniques for solving a well known

geometrical place problems [6]. It is well known that in the case of these problems
a set of points which accomplish a given condition (or a set of conditions) is
explored. In many situations, the searched geometrical place consists of more
than one point (solution). Evolutionary algorithms and PSO techniques are ideal
candidates for this problem mainly due to their ability to deal with a population
of solutions at the same time.

We propose a new particle swarm technique which is based on the basic PSO
algorithm proposed by Eberhart and Kenedy in 1995. Some related work and
existing variants of PSO can be found in [3], [4], [5], [8], [9], [10], [12], [13], [14].

The main scope of our paper is to perform a comparison between PSO and
EA and to exploit the weakness/strength of each of them. Finally, taking into
account of the results, we propose a hybrid algorithm combining PSO and EA
which seems to perform better in complicated situations than each of these
techniques considered separately.

The paper is structured as follows: Section 2 presents some basics of the
PSO technique. Section 3 briefly describes the a new variant of the particle
Swarm technique. The general evolutionary algorithm is described in Section
4. In section 5 some experiments using different test problems are performed.
Conclusions and remarks are presented towards the end.

2 Particle Swarm Optimization Technique

Like other EA techniques, PSO is a population-based search algorithm and is
initialized with a population of random solutions, called particles ([7]).

Unlike in the EA techniques, each particle in PSO is also associated with a
velocity. Particles fly through the search space with velocities which are dynam-
ically adjusted according to their historical behaviors. Therefore, the particles
have the tendency to fly towards the better and better search area over the
course of search process. The PSO was first designed to simulate birds seeking
food which is defined as a ’cornfield vector’ [8].

PSO is initialized with a group of random particles (solutions) and then
searches for optima by updating each generation.

Each individual is treated as a volume-less particle (a point) in the D-
dimensional search space. The ith particle is represented as Xi = (xi1, xi2,. . . ,
x iD). At each generation, each particle is updated by following two ’best’ values.

The first one is the best previous location (the position giving the best fitness
value) a particle has achieved so far. This value is called pBest. The pBest of the
ithparticle is represented as Pi = (pi1, pi2, . . . , piD).

At each iteration, the P vector of the particle with the best fitness in the
neighborhood, designated lor g, and the P vector of the current particle are
combined to adjust the velocity along each dimension, and that velocity is then
used to compute a new position for the particle. The portion of the adjustment

to the velocity influenced by the individual’s previous best position (P) is con-
sidered the cognition component, and the portion influenced by the best in the
neighborhood is the social component.

With the addition of the inertia factor, ω, by Shi and Eberhart [14] (for
balancing the global and the local search), these equations are:
vid = ω*vid + ηx*rand()*(pid - xid) + η2*Rand()*(pgd - xid) (1)
xid = xid+vid (2)
where rand() and Rand() are two random numbers independently generated
within the range of [0,1] and η1 and η2 are two learning factors which control
the influence of the social and cognitive components.

In (1) if the sum on the right side exceeds a constant value, then the veloc-
ity on that dimension is assigned to be ±Vmax. Thus, particles’ velocities are
clamped to the range of [-Vmax, Vmax] which serves as a constraint to control
the global exploration ability of the PSO algorithm. This also reduces the the
likelihood of particles for leaving the search space. Note that this does not re-
strict the values of Xi to the range [-Vmax, Vmax]; it only limits the maximum
distance that a particle will move during one iteration.

3 Proposed PSO Approach for Dealing with Geometrical
Place problems

The proposed PSO algorithm is similar to the classical one which uses neigh-
borhoods but still there are some differences which are described below. We
consider the PSO algorithm with neighborhoods, but not overlapping ones as
usual. Thus, the particles in the swarm ’fly’ in independent sub-swarms. It is
just like dividing the swarm into multiple independent ’neighborhoods’[1], [11].
The dimension of each neighborhood (sub-swarms) is the same for all considered
sub-swarms. The reason for not choosing overlapping neighborhoods is that for
the geometrical place problems the solution consists of a set of points and not
merely a single point. In the classical PSO, each solution will follow the best so-
lution in the swarm or the best solution located in its neighborhood. This means,
finally all solutions will converge to the same point. But for the geometrical place
problem we need to find a set of different solutions. By considering different sub-
swarms, the number of solutions which can be obtained at the end of the search
process might be at most equal to the number of sub-swarms (this in case each
sub-swarm will converge to a different point). Taking into account all these con-
siderations, we will consider small sub-swarms (having usually few particles: 4
or 5) so that we have the chances to obtain, finally, a greater number of different
points (which is ideal for geometrical place problems). The algorithm proposed is
called Independent Neighborhoods Particle Swarm Optimization (INPSO). The
main steps of the INPSO algorithm are described below:

INPSO algorithm

while iteration <= max iterations do

begin
for each particle p do
begin

Calculate fitness value
if the fitness value is better than the its best fitness value in history
then Update pbest
if the fitness value attained a minimum criteria
then Stop particle p in the current pbest location

end
for each particle pdo
begin

Identify the particle in the neighborhood with the best fitness value
so far as the lbest
Assign its index to the variable l
if particle p is not stopped
then Calculate particle velocity according equation (a)
Update particle position according equation (b)

end
end

When a particle finds a feasible solution (its fitness value attains minimum cri-
teria) it is obvious there is no need to continue ’flying’ and thus the particle can
stop at that pBest location. But the particle will continue to share its experience
with its still ’flying’ neighbors (particles belonging to the same sub-swarm).

4 Experiment Results

This section illusrates the various experiments performed using geometrical place
problems. Results obtained by the INPSO are compared with the results ob-
tained by the standard EA. The EA used in the experiments uses real encoding
of solutions. Mutation and convex crossover are the genetic operators used. Pa-
rameters used by INPSO are given in Table 1 and parameters used by EA are
given in Table 2.

Table 1. Parameter settings for INPSO

Parameter Value

ηx 1.49445

ηy 1.49445

Sub-swarm size 4

Vmax 0.1* Xmax

inertia weight [0.5+(Rnd/2.0)]

Both ηx and η2 are set to 1.49445 [2] to make the search cover all surrounding
regions which is centered at the pBest and lBest. A randomized inertia weight

Table 2. Parameter settings for EA

Parameter Value

Sigma 1

Crossover probability 0.5

Mutation probability 0.7

is used, namely it is set to [0.5+(Rnd/2.0)] ([5]). Vmax is set to 0.1* Xmax. The
value of Vmaxis usually chosen to be k*Xmax, with 0.1≤ k≤1.0 [4].

Population size is the same for both algorithms: 500 individuals and particles
respectively.

4.1 Experiment 1

We consider the case in which the geometrical place of the points for which the
difference (in absolute value) of the distances to two given points is equal to a
given constant k. In a two dimensional space the geometrical place consists of
hyperbole of focuses of the two given points. In a three dimensional space the
geometrical place consists on the hyperboloid of focuses of the two given points.
This problem can also be extended to higher dimensional spaces.

We consider the same population randomly generated for both algorithms.
The populations obtained after 50 generations by INPSO and EA are depicted
in Figure 1 (a) and Figure 1 (b) respectively. Population obtained after 200
generations by INPSO and EA is depicted in Figure 2 (a) and Figure 2(b)
respectively.

Fig. 1. Population obtained after 50 generations. (a) population obtained by INPSO,
(b) population obtained by EA.

As evident from these figures, INPSO algorithm has converged faster than
EA. Even after 250 generations, there are some particles which did not con-

Fig. 2. Population obtained after 200 generations. (a) population obtained by INPSO,
(b) population obtained by EA.

verge to the geometrical place. The EA individuals takes longer time (about 500
generations) but all the individuals finally converged to the geometrical place.
Using the hybrid approach (INPSO for first 100 generations and EA after 100
generations) all solutions converged to the geometrical place in less than 250
generations. h

4.2 Experiment 2

In this experiment the geometrical place of the points M for which the product of
the distances to two fixed points F1(-c, 0) and F2(c, 0) is equal to the constant a2

is searched. This geometrical place is called the oval of Cassiani. The geometrical
place depends on the values of a and c. Four cases can be envisaged and we will
analyze two of the cases.

Case a < c.
Let us consider, for instance, a = 150 and c = 151. Population obtained after

50 generations by INPSO and EA is depicted in Figure 3 (a) and (b) respectively.
Population obtained after 250 generations by INPSO, EA and INPSO com-

bined with EA is depicted in Figure 4.
The INPSO algorithm obtained the solutions (all particles will converge to

the geometrical place) after 1000 generations while the individuals of EA con-
verged after 800 generations. But the combined INPSO and EA obtained the
solutions within 250 generations.

Case a > c
When a = 200 and c = 150, population obtained after 50 generations by

INPSO and EA is depicted in Figure 5 (a) and (b) respectively. Population
obtained after 250 generations by INPSO, EA and INPSO combined with EA is
depicted in Figure 6.

As evident from these experiments, INPSO is very fast compared to EA. For
more difficult problems there can be situations where some particles could never

Fig. 3. Population obtained after 50 generations by INPSO (Figure 5 (a)) and by EA
(Figure 5 (b)).

Fig. 4. Population obtained after 250 generations by INPSO (Figure 6(a)), EA (Figure
6(b) and INPSO combined to EA (Figure 6(c)).

Fig. 5. Population obtained after 50 generations by INPSO (Figure 7 (a)) and by EA
(Figure 7 (b)).

Fig. 6. Population obtained after 250 generations by INPSO (Figure 8(a)), EA (Figure
8(b) and INPSO combined to EA (Figure 8(c)).

converge to the geometrical place. EA is not very fast but with a good population
size and Irsgurnumber of generations the performance could improve. Empirical
results using the hybrid approach illustrate that the combination could play
an important role in finding solutions with fewer number of generations when
compared to the individual approaches.

5 Acknowledgements

This research was supported by the MIC (Ministry of Information and Commu-
nication), Korea, under the Chung-Ang University HNRC-ITRC (Home Network
Research Center) support program supervised by the IITA (Institute of Infor-
mation Technology Assessment).

6 Conclusions

In this paper a new variant of PSO called Independent Neighborhood Particle
Swarm Optimization (INPSO) is proposed and used to solve geometrical place
problems. INPSO uses independent sub-swarm which evolves independently with
respect to the entire population. The PSO rules are applied for each sub-swarm.

Performance of INPSO is compared with the classical Evolutionary Algo-
rithms (EA). INPSO is very fast compared to EA. But, for difficult problems,
there can be some particles (a sub-swarm for instance) which could never con-
verge. Taking into account these issues, we proposed a hybrid approach involving
INPSO and EA. The key advantages of the hybrid approach are in making use
of the fast convergence property of INPSO and EA’s definite convergence (guar-
anteed solution). After a given number of INPSO generations (in our case after
100 generations) EA method was deployed. The combination obtains the solu-
tions very fast and all individuals converged to the geometrical place with fewer
iterations.

References

1. Bergh, F.D. and Engelbrecht, A. A Cooperative Approach to Particle Swarm Op-
timization, IEEE Transaction on Evolutionary Computation, 8(3): pp. 225-239,
2004.

2. Clerc, M. The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization. Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC 1999), pp. 1951-1957, 1999.

3. Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micromachine and Human
Science, Nagoya, Japan. pp. 39-43, 1995.

4. Eberhart, R. C., Simpson, P. K., and Dobbins, R. W. Computational Intelligence
PC Tools. Boston, MA: Academic Press Professional, 1996.

5. Eberhart, R. C. and Shi, Y. Particle swarm optimization: developments, applica-
tions and resources. Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC 2001), Seoul, Korea. 2001

6. Grosan, C. Solving geometrical place problems by using Evolutionary Algorithms.
World Computer Congress, Student Forum, M. Kaaniche (Ed.), Toulouse, France,
pp. 365-375, 2004

7. Hu, X., Shi Y., and Eberhart, R.C. Recent Advences in Particle Swarm, Congress
on evolutionary Computation, Portland, Oregon, June 19-23, pp. 90-97, 2004

8. Kennedy, J. and Eberhart, R. C. Particle swarm optimization.Proceedings of IEEE
International Conference on Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, Vol.IV, pp.1942-1948, 1995.

9. Kennedy, J. Minds and cultures:Particle swarm implications. Socially Intelligent
Agents: Papers from the 1997 AAAI Fall Symposium. Technical Report FS-97-02,
Menlo Park, CA: AAAI Press, 67-72, 1997.

10. Kennedy, J. The Behavior of Particles, 7th Annual Conference on Evolutionary
Programming, San Diego, USA, 1998.

11. Krohling, R.A., Hoffmann, F. and Coelho, L.S. Co-evolutionary Particle Swarm
Optimization for Min-Max Problems using Gaussian Distribution, In Proceedings
of the Congress on Evolutionary Computation (CEC’2004), IEEE Press, Vol. 1,
pp. 959-964, 2004.

12. Shi, Y., and Eberhart, R. C. Empirical study of particle swarm optimization. Pro-
ceedings of the 1999 Congress on Evolutionary Computation, 1945-1950. Piscat-
away, NJ: IEEE Service Center, 1999.

13. Shi, Y., and Eberhart, R. C. Parameter selection in particle swarm optimization,
Proceedings of the 1998 Annual Conference on Evolutionary Computation, 1998.

14. Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proceedings of
the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ.
pp. 69-73, 1998

