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Abstract—Concrete is viewed as the most important cement-
based composite material in the field of civil engineering. Its
strength is considered the most important among its mechani-
cal properties. Although the value of strength can be directly
forecasted, the estimation of strength grade remains particularly
important because concrete mortar is non-uniform, and prac-
tical preparation and curing cannot be fully simulated under
laboratory conditions. In this paper, concrete strength grade
was predicted by using the floating centroids method neural
network classifier, which removes the fixed-centroid constraint
and increases the possibility of finding an optimal neural network.
Experimental results show that concrete strength prediction
performance is improved by employing the floating centroids
method.

Index Terms—Neural Network, Floating Centroids Method,
Concrete Strength

I. INTRODUCTION

Concrete is viewed as the most important cement-based

composite material in the field of civil engineering. Concrete

is a kind of artificial stone obtained by preparing, mixing, and

curing a mixture of cement, aggregates, and water. Certain

advantages of concrete include abundance of raw materials,

low cost, and a simple production process. In addition, concrete

has higher compressive strength and superior durability com-

pared with other engineering materials. The concrete material

is widely used in various applications, including civil engineer-

ing, shipbuilding, industrial machinery, ocean development,

and geothermal engineering.

One of the most essential cementitious materials used in

modern concrete is cement, which consists of a variety of

clinker minerals and admixtures. The differences in hydration

activity between different components complicate the model-

ing and analysis of cement hydration. Furthermore, cement

hydration directly affects the development of heat release, me-

chanical properties, cracking resistance, and durability. Thus,

predicting which properties of concrete would be affected by

cement hydration remains a difficult task.

The most important among the mechanical properties of

concrete is strength, which refers to the capacity of concrete

to resist pressure, pull, bend, and shear. The grade of concrete

is classified based on its standard compressive strength, and

concrete strength is directly affected by the following: mix

ratio, amount and type of cement and aggregate, and the prepa-

ration and curing process. Compressive strength is traditionally

determined by preparing, curing, and testing a cubic-shaped

concrete specimen. Concrete specimens are then taken out after

a certain age to measure average strength. However, such a

conventional experimental method consumes a large quantity

of raw materials and requires a great deal of time.

The strength value of concrete and cement can be forecasted

using various computational methods such as neural network

[1], gene expression programming [2], support vector machines

[3], and genetic programming [4]. However, the concrete

mortar itself is non-uniform. Thus, practical preparation and

curing cannot be fully simulated under laboratory conditions.

Therefore, the estimation of strength grade, which corresponds

to the range of strength, remains particularly important. Aside

from direct forecasting, the prediction of concrete strength can

also be transformed into a classification problem in which the

concrete specimen is categorized into one of the grades. The

classification task is a major research area in data mining. The

supervised classification model is built from a given training

set and can predict the class of the following test samples.

Various classification techniques have been proposed, such as

[5], [6]. In these techniques, the neural network classifier [7]–

[10] succeeds in several practical applications and shows a

great potential for application.

However, the fixed-centroid constraint decreases the likeli-

hood of finding an optimal neural network in the traditional

neural network classifier. The floating centroids method (FCM)

[11]–[14] is a new neural network classifier that removes

the limit of fixed-centroids by introducing several floating

centroids, which are spread throughout the partition space and

produced via the k-means algorithm. This method outperforms

other classifiers and shows favorable application potential [11].

The high cost of the traditional experimental method for
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Fig. 1. A colored partition space of 3-class classification [11]. The dimension
of partition space is 2 and the number of centroids is 4.

determining concrete strength and the progress achieved by the

FCM neural network classifier motivates this study to explore

the process of classifying concrete strength grade using FCM.

This paper is arranged as follows. Section 2 describes the

floating centroids method and its application in the prediction

of concrete strength grade. Section 3 outlines and discusses

our experimental results, and Section 4 concludes this paper.

II. METHODOLOGY

A. Floating Centroids Method

Based on the output of a neural network, the partition

space is responsible for classifying the samples as a class.

The classification commences when FCM generates certain

floating centroids with category labels in the partition space.

These floating centroids are then used to classify the mapped

sample points. Partition is defined as the irregular regions

around centroids. The partitions in traditional neural network

classifiers are determined manually, whereas the partitions in

FCM are divided automatically based on actual distribution.

Therefore, natural decision boundaries exist between partitions.

Certain abstract symbols of class, which are called ”colors”,

are attached to these centroids to mark their type. The partition

space that contains the colored centroids is called the ”colored

partition space.” Fig. 1 illustrates these concepts.

A sample that needs to be classified is first mapped by the

neural network to the partition space. The class of a sample

is then predicted as the class of the centroid nearest to the

corresponding mapped point of the sample in the partition

space.

In the learning process of FCM, the task of finding the

optimum neural network and minimizing the target function

is performed by particle swarm optimization (PSO) [15], [16],

which is a widely used and effective optimization tool inspired

by the foraging of birds. PSO aims to solve global optimization

problems. The ”particle” represents a possible solution to a

problem in the search space. In the PSO algorithm, particles

fly in the search space following the best solution found by

the whole population and the historical best solution found

by each particle. This process is performed repeatedly until

the termination condition is satisfied. The position of the best

particle is an approximate optimum solution. In the FCM

neural network classifier, a particle represents a vector coded

from a feasible neural network. The optimization goal is to

identify the best neural network and the corresponding colored

partition space.

FCM performs the centroid generation process to obtain

the floating centroids and color schemes. FCM covers both

the calculation of centroids and the assignment of class labels.

First, all training samples are mapped to the partition space

by the neural network. These mapping points are called color

points, which are then partitioned into a fixed number of dis-

joint subsets using the k-means clustering algorithm [17]. The

centers of these disjoint subsets are defined as the centroids.

Finally, each of these centroids is colored by one of the classes

if the training points of that class comprise the majority of all

points around the centroid.

The learning process of FCM attempts to find the best

neural network by keeping the points in the same class as

close as possible and the points in different classes as far

as possible from one another [11]. Natural boundaries exist

between centroids because the position and class label of

centroids are computed based on actual distribution. Therefore,

floating (ienvolving number and position) centroids in FCM

remove the limit from the fixed centroid and increase the

chance of finding the optimal neural network compared with

the one-per-class SoftMax [18] and ECOC [19] methods.

B. Prediction of Concrete Strength Grade

The training data set can be obtained from the concrete

experiments by setting the mix ratio of raw material and the

curing age as inputs and the final strength grade as output.

These training data are fed into the learning stage of FCM

to obtain the optimum neural network and its corresponding

colored partition space. If the strength grade of a new concrete

specimen has to be categorized, its mix ratio and curing age are

first mapped into the colored partition space by the constructed

neural network. The category is then predicted based on the

class of the nearest centroid. Fig. 2 illustrates the categorization

of a sample to a certain strength grade using FCM.

III. EXPERIMENTS

To assess the validity of the FCM algorithm in the classifi-

cation of concrete strength grade, three kinds of measurement

standards are adopted in experiment: training accuracy (TA),

generalization accuracy (GA), and average f-measure (Avg.

FM), which are defined as follows:

TA =
number o f correctly classi f ied samples in training data set

number o f total samples in training data set
(1)

989989989
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Fig. 2. Categorize a new concrete sample. The dimension of partition space is set to two and the number of classes is three.

GA =
number o f correctly classi f ied samples in test data set

number o f total samples in test data set
(2)

Avg. FM =

N
∑

i=1

(
2× precisioni×recalli

precissioni+recalli

)

N
(3)

TA measures how well a method adapts the training data.

A method will achieve higher TA if it adapts training data

better. GA measures how well a method adapts the testing

data. A method will achieve higher GA if it possesses better

generalization capability. Avg. FM considers both the precision

and the recall of the test to compute the score. Precision refers

to the number of correct results divided by the number of all

returned results, whereas recall refers to the number of correct

results divided by the number of results that should have been

returned. The best value for the f-measure is one, whereas the

worst value is zero. Our experiments adopted Avg. FM, which

calculates the mean value for all the classes.

The concrete compressive strength data set, which was

selected from the UCI machine learning repository (available

from the website: http://archive.ics.uci.edu/ml/), was taken as

the experimental data. These data sets contained 1030 samples,

and each sample consisted of eight input variables: Cement

(kg/m3), Blast Furnace Slag (kg/m3), Fly Ash (kg/m3), Water

(kg/m3), Superplasticizer (kg/m3), Coarse Aggregate (kg/m3),

Fine Aggregate (kg/m3), and Age (day). The output variable is

concrete compressive strength (MPa). All samples are divided

into four classes. The first class (C1) consists of samples that

are less than 20Mpa. The second class (C2) consists of samples

that are less than 40Mpa but greater than 20Mpa. The third

class (C3) consists of samples that are less than 60Mpa but

greater than 40Mpa. The fourth class (C4) consists of samples

that are greater than 60Mpa.

To balance the scale, all features are normalized using the

min-max normalization method. This method performs a linear

transformation that maps the original value of the feature f to

a new value between zero and one from the scale between the

maximum value fmax and the minimum value fmin as follows:

f ′ =
f − fmin

fmax − fmin
(4)

The 10-fold cross-validation is used to validate the proposed

method [11]. First, each data set is split into 10 subsets

randomly. Second, all samples of each class are assigned into

these subsets uniformly. One subset is then selected as the

testing set, whereas the remaining nine subsets are used as

the entire training set. A one-time validation is conducted for

this pair of training and testing sets. Finally, the procedure is

repeated 10 times, and each subset is tested once. A three-

layered feedforward neural network with 15 hidden neurons is

then selected in the experiment. In addition, PSO is used for the

optimization of the results. The following settings are adopted

in real experiment: Max Generation = 10000, Population Size

= 20, ϕ0 = 1, ϕ1 = 1.8, ϕ2 = 1.8, VMAX = 3, m e= 2, and

k = 6.

The training process of the concrete strength prediction is

shown in Fig. 3, which illustrates the variation of training

accuracy for all 10 validations. This figure shows that the evo-

lution process converges gradually after 600 generations. After

evolution, the optimal neural network and its corresponding

colored partition spaces are obtained. The colored partition

990990990



0 200 400 600 800 1000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

G e ne ratio n

T
ra

in
in

g
 A

c
c

u
ra

c
y

Fig. 3. The training process of concrete strength prediction on all validations.

TABLE I
RESULTS OF TRAINING ACCURACY

Validation One-Per-Class SoftMax ECOC FCM

1 0.304865 0.469189 0.603243 0.770811
2 0.382703 0.608649 0.710270 0.736216
3 0.391351 0.593514 0.608649 0.727568
4 0.511351 0.562162 0.657297 0.754595
5 0.655135 0.554595 0.629189 0.732973
6 0.437838 0.609730 0.656216 0.745946
7 0.449730 0.598919 0.574054 0.665946
8 0.553514 0.224865 0.503784 0.785946
9 0.095135 0.603243 0.650811 0.729730
10 0.556757 0.441081 0.508108 0.809730

MEAN 0.433838 0.526595 0.610162 0.745946
STD 0.156509 0.121530 0.066218 0.038909

spaces are shown in Fig. 4, which shows that the partitions of

close grades are adjacent to one another in the partition space.

FCM was compared with three other neural network clas-

sifiers: the traditional method (a simple output method for

binary classification and a one-per-class method for multi-

classification), SoftMax, and ECOC (exhaustive code). Table

I-III depicets the accuracy results of the comparison between

FCM and the other methods in terms of concrete strength

prediction. The average training accuracy of FCM is evidently

higher than that of the other methods in the experiments.

Moreover, the smallest standard deviation is also produced

by FCM, which indicates that FCM is more stable. These

findings reflect that FCM fits the training data set better. The

introduction of the floating centroid increases the possibility

of finding good classifier during the learning process. Further-

more, FCM achieves the highest average GA and Avg. FM in

the experiments, thereby indicating that FCM is fully capable

of improving the capability of the neural network classifier to

predict concrete strength.
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Fig. 4. The colored partition space on all validations. Each of them
corresponds to a neural network. The blue partition is C1. The sky blue
partition is C2. The yellow partition is C3 and the red partition is C4.
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TABLE II
RESULTS OF GENERALIZATION ACCURACY

Validation One-Per-Class SoftMax ECOC FCM

1 0.333333 0.428571 0.561905 0.542857
2 0.438095 0.466667 0.552381 0.609524
3 0.228571 0.638095 0.552381 0.780952
4 0.276190 0.523810 0.561905 0.761905
5 0.504762 0.599999 0.542857 0.780952
6 0.514286 0.571429 0.495238 0.704762
7 0.314286 0.609524 0.419048 0.761905
8 0.533333 0.247619 0.447619 0.761905
9 0.009524 0.542857 0.485714 0.790476
10 0.361905 0.438095 0.514286 0.638095

MEAN 0.351429 0.506667 0.513333 0.713333
STD 0.159897 0.116366 0.050485 0.086760

TABLE III
RESULTS OF AVERAGE F-MEASURE

Validation One-Per-Class SoftMax ECOC FCM

1 0.227075 0.156250 0.375291 0.532906
2 0.198696 0.260237 0.430754 0.571778
3 0.218927 0.369343 0.38144 0.738408
4 0.377857 0.329517 0.499901 0.805318
5 0.414323 0.414309 0.367088 0.819663
6 0.312174 0.329283 0.384093 0.739809
7 0.203474 0.354955 0.325974 0.647011
8 0.331278 0.125848 0.183277 0.698486
9 0.005102 0.301441 0.290078 0.763203
10 0.276863 0.152318 0.345441 0.490975

MEAN 0.256577 0.279350 0.358334 0.680756
STD 0.115649 0.101514 0.083908 0.115290

IV. CONCLUSION

In this paper, we explored the process of classifying

concrete strength grade using the neural network classifier

with FCM, which removes the fixed-centroid constraint and

increases the possibility of finding an optimal neural network.

This method divides the output partition space into many

irregular partitions using floating centroids. By setting the mix

ratio of raw material and the curing age as inputs and the final

strength grade as output, FCM translates the properties of the

concrete sample to a grade of strength. The strength grade of

the sample is predicted based on the grade of the centroid

nearest to the mapped point.

To evaluate the performance of the proposed approach, the

well-known concrete compressive strength data set is selected

to compare several measurements. Experimental results man-

ifest that prediction performance is improved by employing

FCM.
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