
Soft Comput (2007) 11:753–772
DOI 10.1007/s00500-006-0118-y

FOCUS

L-wrappers: concepts, properties and construction
A declarative approach to data extraction from web sources

Costin Bădică · Amelia Bădică · Elvira Popescu ·
Ajith Abraham

Published online: 6 July 2006
© Springer-Verlag 2006

Abstract In this paper, we propose a novel class of
wrappers (logic wrappers) inspired by the logic prog-
ramming paradigm. The developed Logic wrappers
(L-wrapper) have declarative semantics, and therefore:
(i) their specification is decoupled from their implemen-
tation and (ii) they can be generated using inductive
logic programming. We also define a convenient way for
mapping L-wrappers to XSLT for efficient processing
using available XSLT processing engines.

Keywords Logic wrappers · Information retrieval ·
Web intelligence · Inductive logic programming

C. Bădică (B)
Software Engineering Department,
University of Craiova,
Bvd.Decebal 107, Craiova 200440, Romania
e-mail: badica_costin@software.ucv.ro

A. Bădică
Business Information Systems Department,
University of Craiova,
A.I.Cuza 13, Craiova 200585, Romania

E. Popescu
Software Engineering Department,
University of Craiova,
Bvd.Decebal, Craiova 200440, Romania
e-mail: popescu_elvira@software.ucv.ro

A. Abraham
IITA Professorship Program,
School of Computer Science and Engineering,
Chung-Ang University,
221, Heukseok-dong, Dongjak-gu Seoul 156-756,
Republic of Korea
e-mail: ajith.abraham@ieee.org

1 Introduction

The Web is now a huge information repository that is
characterized by (i) high diversity, i.e. the Web informa-
tion covers almost any application area, (ii) disparity,
i.e. the Web information comes in many formats rang-
ing from plain and structured text to multimedia doc-
uments and (iii) rapid growth, i.e. old information is
continuously being updated in form and content and
new information is constantly being produced. The
HTML markup language is the lingua franca for pub-
lishing information on the Web.

The Web was designed for human consumption
rather than machine processing. Web pages are designed
by humans and are targeted to human consumers that
seek specialized information in various areas of interest.
That information can be reused for different problem
solving purposes; in particular it can be searched, fil-
tered out, processed, analyzed, and reasoned about.

For example, in the e-tourism domain one can note
an increasing number of travel agencies offering online
services through online transaction brokers [21]. They
provide to human users useful information about hotels,
flights, trains or restaurants, in order to help them plan-
ning their business or holiday trips. Travel information,
like most of the information published on the Web, is
heterogeneous and distributed, and there is a need to
gather, search, integrate and filter it efficiently [17] and
ultimately to enable its reuse for multiple purposes. The
high diversity and disparity of Web content hinder its
automatic processing. In our opinion, this explains the
significant growth of the interest in the field of automa-
tizing the tasks of data extraction from the Web and this
interest is expected to grow, as the Web is continuously
growing in both size and complexity.

754 C. Bădică et al.

Another interesting use of data harvested from semi-
structured Web sources that has been recently proposed
[3] is to feed business intelligence tasks, in areas like
competitive analysis and intelligence. According to [3],
business intelligence can be broadly understood as an
insight into a company and its chain of actions. There-
fore, developing tools that help automate the process of
data extraction and integration about competitors from
public information sources on the Web, is of primary
importance.

Two emergent technologies that have been put for-
ward to enable automated processing of information
published on the Web are semantic markup and Web
services. However, most of the current practices in Web
publishing are still being based on the combination of
traditional HTML – lingua franca for Web publishing,
with server-side dynamic content generation from dat-
abases. Moreover, many Web pages are using HTML
elements that were originally intended for use to struc-
ture content (e.g. those elements related to tables), for
layout and presentation effects, even if this practice is
not encouraged in theory. Therefore, techniques devel-
oped in areas like information extraction, machine learn-
ing and wrapper induction are still expected to play
a significant role in tackling the problem of Web data
extraction.

Many Web sources can be nicely abstracted as pro-
viding relational data as sets of tuples, including: search
engines result pages, product catalogues, news sites,
product information sheets, travel resources, multime-
dia repositories, Web directories, etc. Data extraction
is related to the more general problem of information
extraction that is traditionally associated with artificial
intelligence and natural language processing. Informa-
tion extraction was developed as part of DARPA’s MUC
program and originally was concerned with locating
specific pieces of information in text documents writ-
ten in natural language [22] and then using them to
populate a database or structured document. The field
then expanded rapidly to cover extraction tasks from
networked documents including HTML and XML and
attracted other communities including databases, elec-
tronic documents and Web technologies. Usually, the
content of these data sources can be characterized as
neither natural language, nor structured, and therefore
usually the term semi-structured data is used. For these
cases we consider that the term data extraction is
more appropriate than information extraction and
consequently, we shall use it in the rest of this paper.

One area that can be described as a success story
for the application of traditional machine learning tech-
nologies (like inductive logic programming) is wrapper
induction for data extraction from the Web. A

wrapper is a program that is actually used for performing
the data extraction task. Manual creation of wrappers is
a tedious, error-prone and quite difficult task, and there-
fore, a lot of techniques for (semi-)automatic wrapper
construction have been proposed. Some of these ap-
proaches [18] propose a generic wrapper written in a
procedural programming language that is then special-
ized for a particular data extraction task by instantiating
its set of parameters. The values of the parameters are
determined using machine learning.

In this paper we propose a novel class of wrappers in-
spired by the logic programming paradigm – L-wrappers
(i.e. logic wrappers). Our wrappers (i) have a declarative
semantics, and therefore their specification is decoupled
from their implementation and (ii) can be generated
using inductive logic programming. In particular, we
outline an approach for the efficient implementation of
L-wrappers using XSLT transformation language [12] –
a standard language for processing XML documents.

This study serves at least the following purposes: (i)
to give a concise specification of L-wrappers; this en-
ables a theoretical investigation of their properties and
operations and allows comparisons with related works;
(ii) to devise an approach for semi-automatic construc-
tion of L-wrappers within the framework of inductive
logic programming; (iii) to define a convenient way for
mapping L-wrappers to XSLT for efficient processing
using available XSLT processing engines; the mathe-
matically sound approach enables also the study of the
correctness of the implementation of L-wrappers using
XSLT (however, this issue is not addressed in this paper;
only an informal argument is given). In our opinion, one
advantage of our proposal is the use of the right tool for
tackling a given task, i.e. for learning extraction rules it
employs inductive logic programming systems [26], and
for performing the extraction it employs XSLT technol-
ogy [12].

The paper is structured as follows. First, note that
the application of ILP, logic representations and XML
technologies to information extraction from the Web
is not an entirely new field; several approaches and
tool descriptions have already been proposed and pub-
lished ([3,11,14,16,18,20,28,29,23]; see also the survey
in [19]). Therefore, we start with a summary of these
relevant works, briefly comparing them with our own
work. Second, in Sect. 3 we follow with a concise descrip-
tion of the syntax and semantics of extraction patterns.
Syntax is defined using directed graphs, while seman-
tics and sets of extracted tuples are defined using a
model-theoretic approach. Then, we discuss pattern
properties – subsumption, equivalence, and operations –
simplification and merging. Third, in Sect. 4 we
show how the task of semi-automatic construction of

L-wrappers: concepts, properties and construction 755

L-wrappers can be mapped to inductive logic program-
ming. In particular, we show how FOIL system [26]
can be used for achieving this task. This section con-
tains also a brief description of the software tools that
we have used in our experiments together with exper-
imental results in various settings. In Sect. 5 we out-
line an algorithm for mapping L-wrappers to a subset
of XSLT. Then we show how L-wrappers technology
was successfully applied in the e-travel domain, on a
non-trivial example – data extraction from Traveloc-
ity1 Web site. The last section of the paper contains
some concluding remarks and points to future research
directions.

2 Wrappers for Web sources: related research

With the rapid expansion of the Internet and the Web,
the field of information extraction from HTML attracted
a lot of researchers during the last decade. Clearly, it is
impossible to mention all of their work here. However,
at least we can try to classify these works along several
axes and select some representatives for discussion.

First, we are interested in research on information
extraction from HTML using logic representations of
tree (rather than string) wrappers that are generated
automatically using techniques inspired by ILP. Second,
both theoretical and experimental works are considered.

Freitag [14] is one of the first papers describing a
“relational learning program” called SRV. It uses a
FOIL-like algorithm for learning first order informa-
tion extraction rules from a text document represented
as a sequence of lexical tokens. Rule bodies check var-
ious token features like: length, position in the text
fragment, if they are numeric or capitalized, etc. SRV
has been adapted to learn information extraction rules
from HTML. For this purpose new token features have
been added to check the HTML context in which a to-
ken occurs. The most important similarity between SRV
and our approach is the use of relational learning and
a FOIL-like algorithm. The difference is that our ap-
proach has been explicitly devised to cope with tree
structured documents, rather than string documents.

In [11] is described a generalization of the notion
of string delimiters developed for information extrac-
tion from string documents [18] to subtree delimiters for
information extraction from tree documents. The paper
describes a special purpose learner that constructs a
structure called candidate index based on trie data struc-
tures, which is very different from FOIL’s approach.
Note however, that the tree leaf delimiters described

1 http://www.travelocity.com

in that paper are very similar to our information extrac-
tion rules. Moreover, the representation of reverse paths
using the symbols Up(↑), Left(←) and Right(→) can be
easily simulated by our rules using the relations child
and next.

In [29] a technique is proposed for generating XSLT-
patterns from positive examples via a GUI tool and
using an ILP-like algorithm. The result is a NE-agent
(i.e. name extraction agent) that is capable of extracting
individual items. A TE-agent (i.e. term extraction agent)
then uses the items extracted by NE-agents and global
constraints to fill-in template slots (tuple elements
according to our terminology). The differences in our
work are: XSLT wrappers are learnt indirectly via L-
wrappers; our wrappers are capable of extracting tuples
in a straightforward way, therefore TE-agents are not
needed.

In [2] Elog is described, a logic Web extraction lan-
guage. Elog is employed by a visual wrapper genera-
tor tool called Lixto. Elog uses a tree representation
of HTML documents (similar to our work) and defines
Datalog-like rules with patterns for information extrac-
tion. Elog is very versatile by allowing the refinement
of the extracted information with the help of regular
expressions and the integration between wrapping and
crawling via links in Web pages. Elog uses a dedicated
extraction engine that is incorporated into Lixto tool.

In paper [28] is introduced a special wrapper language
for Web pages called token-templates. Token-templates
are constructed from tokens and token-patterns. A Web
document is represented as a list of tokens. A token
is a feature structure with exactly one feature having
name type. Feature values may be either constants or
variables. Token-patterns use operators from the lan-
guage of regular expressions. The operators are applied
to tokens to extract relevant information. The only sim-
ilarity between our approach and this approach is the
use of logic programming to represent wrappers.

In paper [20] is described the DEByE (i.e. data extrac-
tion by example) environment for Web data manage-
ment. DEByE contains a tool that is capable to extract
information from Web pages based on a set of examples
provided by the user via a GUI. The novelty of DEByE
is the possibility to structure the extracted data based
on the user perception of the structure present in the
Web pages. This structure is described at example col-
lection stage by means of a GUI metaphor called nested
tables. DEByE addresses also other issues needed in
Web data management like automatic examples genera-
tion and wrapper management. Our L-wrappers are also
capable of handling hierarchical information. However,
in our approach, the hierarchical structure of informa-
tion is lost by flattening during extraction (see the printer

756 C. Bădică et al.

example where tuples representing features of the same
class share the feature class attribute).

In paper [27] tree wrappers for tuples extraction are
introduced. A tree wrapper is a sequence of tree extrac-
tion paths. There is an extraction path for each extracted
attribute. A tree extraction path is a sequence of triples
that contain a tag, a position and a set of tag attributes. A
triple matches a node based on the node tag, its position
among its siblings with a similar tag and its attributes.
Extracted items are assembled into tuples by analyzing
their relative document order. The algorithm for learn-
ing a tree extraction path is based on the composition
operation of two tree extraction paths. Note also that
L-wrappers use a different and richer representation of
node proximity and therefore, we have reasons to be-
lieve that they could be more accurate (this claim needs,
of course, further support with experimental evidence).
Finally, note that L-wrappers are fully declarative, while
tree wrappers combine declarative extraction paths with
a procedural algorithm for grouping extracted nodes
into tuples.

An interesting application of data extraction and
annotation in the framework of logic programming is
discussed in paper [8]. This work extends Lixto [2,3] to
a platform that allows manipulation of Web data using
logic-based inference.

A new wrapper induction algorithm inspired by induc-
tive logic programming is introduced in paper [1]. The
algorithm exploits traversal graphs of documents trees
that are mapped to XPath expressions for data extrac-
tion. However, that paper does not define a declara-
tive semantics of the resulting wrappers. Moreover, the
wrappers discussed in [1] aim to extract only single items,
and there is no discussion of how to extend the work to
tuples extraction.

As concerning theoretical work, [16] is one of the first
papers that analyzes seriously the expressivity required
by tree languages for Web information extraction and
its practical implications. Combined complexity and ex-
pressivity results of conjunctive queries over trees, that
also apply to information extraction, are reported in [15].

Finally, in [19] is contained a survey of Web data
extraction tools. That paper contains a section on wrap-
per languages including HTML-aware tools (tree wrap-
pers) and a section on wrapper induction tools.

3 L-wrappers and their patterns

3.1 Patterns: syntax and semantics

We model semi-structured data as labeled ordered trees.
A wrapper takes a labeled ordered tree and returns a

subset of tuples of extracted nodes. An extracted node
can be viewed as a subtree rooted at that node.

Within this framework, an L-wrapper can be regarded
as a set of data extraction patterns. A pattern is inter-
preted as a conjunctive query over labeled ordered trees,
yielding a set of tree node tuples as answer. The node
labels of a labeled ordered tree correspond to attributes
in semi-structured databases or tags in tagged texts. Let
� be the set of all node labels of a labeled ordered tree.

For our purposes, it is convenient to abstract labeled
ordered trees as sets of nodes on which certain relations
and functions are defined. Note that in this paper we
are using some basic graph terminology as introduced
in [13].

Definition 1 (Labeled ordered tree) A labeled ordered
tree is a tuple t = 〈T, E, r, l, c, n〉 such that:

(i) (T, E, r) is a rooted tree with root r ∈ T. Here, T is
the set of tree nodes and E is the set of tree edges
[13].

(ii) l : T → � is a node labeling function.
(iii) c ⊆ T × T is the parent–child relation between tree

nodes. c = {(v, u)| node u is the parent of node v}.
(iv) n ⊆ T × T is the next-sibling linear ordering rela-

tion defined on the set of children of a node. For
each node v ∈ T, its k children are ordered from
left to right, i.e. (vi, vi+1) ∈ n for all 1 ≤ i < k.

In what follows we take a graph-based perspective in
defining patterns. Within this framework, a pattern is a
directed graph with labeled arcs and vertices. Arc labels
denote conditions that specify the tree delimiters of the
extracted information, according to the parent-child and
next-sibling relationships (e.g. is there a parent node?,
is there a left sibling?, etc.). Vertex labels specify con-
ditions on nodes (e.g. is the tag label td?, is it the first
child?, etc.). A subset of graph vertices is used for select-
ing the items for extraction.

Intuitively, an arc labeled ‘n’ denotes the “next-
sibling” relation while an arc labeled ′c′ denotes the
“parent-child” relation. As concerning vertex labels,
label ′f ′ denotes “first child” condition, label ′l′ denotes
“last child” condition and label σ ∈ � denotes “equality
with tag σ” condition.

We adopt a standard relational model. Associated to
each information source is a set of distinct attributes.
Let A be the set of attribute names.

Definition 2 (Syntax) An (extraction) pattern is a tuple
p = 〈V, A, U, D, µ, λa, λc〉 such that:

L-wrappers: concepts, properties and construction 757

(i) (V, A) is a directed graph. V is the finite set of ver-
tices and A ⊆ V ×V is the set of directed edges or
arcs.

(ii) λa : A→ {′c′,′ n′} is the labeling function for arcs.
The meanings of ′c′ and ′n′ are: ′c′ label denotes
the parent–child relation and ′n′ label denotes the
next-sibling relation.

(iii) λc : V → C is the labeling function for vertices. It
labels each vertex with a condition from the set C =
{∅, {′f ′}, {′l′}, {σ }, {′f ′,′ l′}, {′f ′, σ }, {′l′, σ }, {′f ′,′ l′,
σ }} of conditions, where σ is a label in the set �

of symbols. In this context, the meanings of ′f ′, ′l′
and σ are: ′f ′ requires the corresponding vertex to
indicate a first child; ′l′ requires the corresponding
vertex to indicate a last child; σ requires the corre-
sponding vertex to indicate a node labeled with σ .

(iv) U = {u1, u2, . . . , uk} ⊆ V is the set of pattern
extraction vertices such that for all 1 ≤ i ≤ k, the
number of incoming arcs to ui that are labeled with
′c′ is 0. k is called the pattern arity.

(v) D ⊆ A is the set of attribute names defining the
relation scheme of the information source. µ :
D → U is a one-to-one function that assigns a
pattern extraction vertex to each attribute name.

Note that according to point (iv) of Definition 2, an
extraction pattern does not state any condition about
the descendants of an extracted node; i.e. it looks only
at its siblings and its ancestors. This is not restrictive in
the context of patterns for information extraction from
HTML; see for example the rules in Elog−, as described
in [16].

Note also that we use the term ‘node’ when referring
to document trees and the term ‘vertex’ when referring
to the graph of an extraction pattern.

In what follows, we provide a model-theoretic seman-
tics for our patterns. In this setting, a labeled ordered
tree is an interpretation domain for the patterns. The
semantics is defined by an interpretation function assign-
ing tree nodes to pattern vertices.

Definition 3 (Interpretation) Let p = 〈V, A, U, D, µ,
λa, λc〉 be a pattern and let t = 〈T, E, r, l, c, n〉 be a la-
beled ordered tree. A function I : V → T assigning tree
nodes to pattern vertices is called interpretation.

Intuitively, patterns are matched against parts of a
target labeled ordered tree. A successful matching asks
for the labels of pattern vertices and arcs to be consis-
tent with the corresponding relations and functions over
tree nodes.

Definition 4 (Semantics) Let p = 〈V, A, U, D, µ, λa, λc〉
be a pattern, let t = 〈T, E, r, l, c, n〉 be a labeled ordered

tree and let I : V → T be an interpretation function. Then
I and t are consistent with p, written as I, t |� p, if and
only if:

(i) If (v, w) ∈ A and λa((v, w)) = ′n′ then (I(v), I(w)) ∈
n.

(ii) If (v, w) ∈ A and λa((v, w)) = ′c′ then (I(v), I(w)) ∈
c.

(iii) If v ∈ V and ′f ′ ∈ λc(v) then for all w ∈ V,
(I(w), I(v)) �∈ n.

(iv) If v ∈ V and ′l′ ∈ λc(v) then for all w ∈ V,
(I(v), I(w)) �∈ n.

(v) If v ∈ V and σ ∈ � and σ ∈ λc(v) then l(I(v)) = σ .

A labeled ordered tree for which an interpretation func-
tion exists is called a model of p.

Our definition for patterns is quite general by allow-
ing to build patterns for which no consistent labeled
ordered tree and interpretation exist. Such patterns are
called inconsistent. A pattern that is not inconsistent is
called consistent. The following proposition states nec-
essary conditions for pattern consistency.

Proposition 1 (Necessary conditions for consistent pat-
terns) Let p = 〈V, A, U, D, µ, λa, λc〉 be a consistent pat-
tern. Then:

(i) The graph of p is a DAG.
(ii) For any two disjoint paths between two distinct

vertices of p, one has length 1 and its single arc is
labeled with ′c′ and the other has length at least 2
and its arcs are all labeled with ′n′, except the last
arc that is labeled with ′c′.

(iii) For all v ∈ V if ′f ′ ∈ λc(v) then for all w ∈ V,
(w, v) �∈ A or c((w, v)) =′ c′ and if ′l′ ∈ λc(v) then
for all w ∈ V, (v, w) �∈ A or c((v, w)) =′ c′ .

The proof of this proposition is quite straightforward.
The idea is that a consistent pattern has at least one
model and this model is a labeled ordered tree. Then,
the claims of the proposition follow from the proper-
ties of ordered trees seen as directed graphs [13]. Note
that in what follows we are considering only consistent
patterns.

The result of applying a pattern to a semi-structured
information source is a set of extracted tuples. An ex-
tracted tuple is modeled as a function from attribute
names to tree nodes, as in standard relational data mod-
eling.

Definition 5 (Extracted tuple) Let p = 〈V, A, U, D, µ,
λa, λc〉 be a pattern and let t = 〈T, E, r, l, c, n〉 be a labeled
ordered tree that models a semi-structured information

758 C. Bădică et al.

source. A tuple extracted by p from t is a function I ◦ µ :
D → T2, where I is an interpretation function such that
I, t |� p.

Note that if p is a pattern and t is a tree then p is able
to extract more than one tuple from t. Let Ans(p, t) be
the set of all tuples extracted by p from t.

3.2 Pattern properties and operations

In this section we study pattern properties – subsump-
tion, equivalence and operations – simplification and
merging.

Subsumption and equivalence enable the study of
pattern simplification, i.e. the process of removing arcs in
the pattern directed graph without changing the pattern
semantics. Merging is useful in practice for constructing
patterns of a higher arity from two or more patterns of
smaller arities (see the example in Sect. 3.3).

3.2.1 Pattern subsumption and equivalence

Pattern subsumption refers to checking when the set of
tuples extracted by a pattern is subsumed by the set of
tuples extracted by a second (possibly simpler) pattern.
Two patterns are equivalent when they subsume each
other.

Definition 6 (Pattern subsumption and equivalence) Let
p1 and p2 be two patterns of arity k. p1 subsumes p2, writ-
ten as p1 � p2, if and only if for all trees t, Ans(p1, t) ⊆
Ans(p2, t). If the two patterns mutually subsume each
other, i.e. p1 � p2 and p2 � p1, then they are called
equivalent, written as p1 � p2.

Examples of pattern subsumption and equivalence
are shown in Fig. 1. Referring to that figure, one can
easily note that p1 ≤ p2 and p3 � p4.

In practice, given a pattern p, we are interested in
simplifying p to yield a new pattern p′ equivalent to p.

Proposition 2 (Pattern simplification) Let p = 〈V, A,
U, D, µ, λa, λc〉 be a pattern and let u, v, w ∈ V be three
distinct vertices of p such that (u, w) ∈ A, λa((u, w)) =
′c′, (u, v) ∈ A, and λa((u, v)) =′ n′. Let p′ = 〈V, A′, U,
D, µ, λ′a, λc〉 be a pattern defined as:

(i) A′ = (A \ {(u, w)}) ∪ {(v, w)}.
(ii) If x ∈ A \ {(u, w)} then λ′a(x) = λa(x), and

λ′a((v, w)) = ′c′.

Then p′ � p.

2 The ◦ operator denotes function composition.

Basically, this proposition says that shifting one posi-
tion right an arc labeled with ′c′ in a pattern produces an
equivalent pattern. The result follows from the property
that for all nodes u, v, w of an ordered tree such that v
is the next sibling of u then w is the parent of u if and
only if w is the parent of v. Note that if (v, w) ∈ A then
the consistency of p enforces λa((v, w)) = ′c′ and this
results in no new arc being added to p′. In this case p
gets simplified to p′ by deleting arc (u, w).

Figure 2 illustrates the operation of pattern simplifi-
cation. On that figure, p is simplified to p′ by deleting arc
(U, W), so p � p′. Intuitively, the fact that U is a child of
W follows from the facts that U is a left sibling of V and
V is a child of W, so it does not need to be represented
explicitly.

A pattern p can be simplified to an equivalent pattern
p′ called normal form.

Definition 7 (Pattern normal form) A pattern p is said
to be in normal form if the out-degree of every pattern
vertex is at most 1.

A pattern can be brought to normal form by repeat-
edly applying the operation described in Proposition 2.
The existence of a normal form is captured by the fol-
lowing proposition.

Proposition 3 (Existence of normal form) For every pat-
tern p there exists a pattern p′ in normal form such that
p′ � p.

Note that the application of pattern simplification
operation from Proposition 2 has the result of decre-
menting by 1 the number of pattern vertices with out-
degree equal to 2. Because the number of pattern
vertices is finite and the out-degree of each vertex is
at most 2, it follows that after a finite number of steps
the resulted pattern will be brought to normal form.

3.2.2 Pattern merging

Merging looks at building more complex patterns by
combining simpler patterns. In practice we found con-
venient to learn a set of simpler patterns that share attri-
butes and then merge them into more complex patterns,
that are capable to extract tuples of higher arity.

Merging two patterns first assumes performing a pair-
ing of their pattern vertices. Two vertices are paired if
they are meant to match identical nodes of the target
document. Paired vertices will be fusioned in the result-
ing pattern.

Definition 8 (Pattern vertex pairings) Let pi = 〈Vi, Ai,
Ui, Di, µi, λai , λci〉, i = 1, 2, be two patterns such that V1∩
V2 = ∅. The set of vertex pairings of p1 and p2 is the
maximal set P ⊆ V1 × V2 such that:

L-wrappers: concepts, properties and construction 759

Fig. 1 Pattern subsumption
and equivalence

Fig. 2 Pattern simplification

(i) For all d ∈ D1 ∩D2, (µ1(d), µ2(d)) ∈ P.
(ii) If (u1, u2) ∈ P, (u1, v1) ∈ A1, (u2, v2) ∈ A2, and

λa1((u1, v1))= λa2((u2, v2))= ′n′ then (v1, v2) ∈ P.
(iii) If (u1, u2) ∈ P, w0 = u1, w1, . . . , wn = v1 is a

path in (V1, A1) such that λa1((wi, wi+1)) = ′n′
for all 1 ≤ i < n − 1, λa1((wn−1, wn)) = ′c′, and
w′0 = u2, w′1, . . . , w′m = v2 is a path in (V2, A2)

such that λa2((w
′
i, w′i+1)) = ′n′ for all 1 ≤ i < m−1,

λa2((w
′
m−1, w′m)) = ′c′ then (v1, v2) ∈ P.

(iv) If (u1, u2) ∈ P, (v1, u1) ∈ A1, (v2, u2) ∈ A2, and
λa1((u1, v1)) = λa2((u2, v2)) =′ n′ then (v1, v2) ∈
P.

(v) If (u1, u2) ∈ P, (v1, u1) ∈ A1, (v2, u2) ∈ A2,
λa1((u1, v1)) = λa2((u2, v2)) = ′c′, and (′f ′ ∈
λc1(v1) ∩ λc2(v2) or ′l′ ∈ λc1(v1) ∩ λc2(v2)), then
(v1, v2) ∈ P.

Defining vertex pairings according to Definition 8
deserves some explanations. Point (i) states that if two
extraction vertices denote identical attributes then they
must be paired. Points (ii), (iii), (iv) and (v) identify
additional pairings based on properties of ordered trees.
Points (ii) and (iii) state that next-siblings or parents of
paired vertices must be paired as well. Point (iv) states
that previous siblings of paired vertices must be paired as
well. Point (v) state that first children and, respectively,
last children of paired vertices must be paired as well.

Figure 3 illustrates graphically how vertex pairing is
performed.

For all pairings (u, v), the paired vertices u and v are
fusioned into a single vertex that is labeled with the
union of the conditions of the original vertices, assum-
ing that these conditions are not mutually inconsistent.

First, we must define the fusioning of two vertices of
a directed graph.

Definition 9 (Vertex fusioning) Let G = (V, A) be a
directed graph and let u, v ∈ V be two vertices such that
u �= v, (u, v) �∈ A, and (v, u) �∈ A. The graph G′ =
(V′, A′) obtained by fusioning vertex u with vertex v is
defined as:

(i) V′ = V \ {v};
(ii) A′ is obtained by replacing each arc (x, v) ∈ A with

(x, u) and each arc (v, x) ∈ A with (u, x).

Pattern merging involves the repeated fusioning of
vertices of the pattern vertex pairings. For each paired
vertices, their conditions must be checked for mutual
consistency.

Definition 10 (Pattern merging) Let pi = 〈Vi, Ai, Ui, Di,
µi, λai , λci〉, i = 1, 2, be two patterns such that V1∩V2 = ∅
and let P be the set of vertex pairings of p1 and p2. If
for all (u, v) ∈ P and for all σ1, σ2 ∈ �, if σ1 ∈ λc1(u)

and σ2 ∈ λc2(v) then σ1 = σ2, then the pattern p =
〈V, A, U, D, µ, λa, λc〉 resulted from merging patterns p1
and p2 is defined as follows:

(i) (V, A) is obtained by fusioning u with v for all
(u, v) ∈ P in graph (V1 ∪ V2, A1 ∪A2).

(ii) U = U1 ∪ U2. D = D1 ∪ D2. If d ∈ D1 then
µ(d) = µ1(d), else µ(d) = µ2(d).

(iii) For all (u, v) ∈ V if u, v ∈ V1 then λa((u, v)) =
λa1((u, v)) else if u, v ∈ V2 then λa((u, v)) =
λa2((u, v)) else if u ∈ V1, v ∈ V2 and (u, u′) ∈ P
then λa((u, v)) = λa2((u

′, v)) else if u ∈ V2, v ∈ V1
and (v, v′) ∈ P then λa((u, v)) = λa2((u, v′)).

760 C. Bădică et al.

Fig. 3 Vertex pairing

wn-1w0

‘n’

‘c’
wn

...
‘n’

w’
m-1w’

0

‘n’

‘c’
w’

m

...
‘n’

v1 v2u1 u2

‘n’ ‘n’

v1 v2

u1 u2

‘c’ ‘c’

‘f’ ‘f’

(iv) If a vertex in x ∈ V resulted from fusioning u with
v then λc(x) = λc1(u) ∪ λc2(v), else if x ∈ V1 then
λc(x) = λc1(x), else λc(x) = λc2(x).

Essentially this definition says that pattern merging
involves performing a pattern vertex pairing (point (i)),
then defining of the attributes attached to pattern extrac-
tion vertices (point (ii)) and of the labels attached to
vertices (point (iv)) and arcs (point (iii)) in the directed
graph of the resulting pattern.

An example of pattern merging is given in the next
section of the paper. Despite these somehow cumber-
some but rigorous definitions, pattern merging is a quite
simple operation that can be grasped more easily using
a graphical representation of patterns (see Fig. 5).

The next proposition states that the set of tuples ex-
tracted by a pattern resulted from merging two or more
patterns is equal to the relational natural join of the sets
of tuples extracted by the original patterns.

Proposition 4 (Tuples extracted by a pattern resulted
from merging) Let p1 and p2 be two patterns and let p be
their merging. For all labeled ordered trees t, Ans(p, t) =
Ans(p1, t) �� Ans(p2, t). �� is the relational natural join
operator.

This result follows by observing that a pattern can
be mapped to a conjunctive query over the signature
(child, next, first, last, (tagσ)σ∈�). Relations child, next,

first, last and tagσ are defined as follows (here N is the
set of tree nodes):

(i) child ⊆ N ×N , (child(P, C) = true)⇔ (P is the
parent of C).

(ii) next ⊆ N ×N , (next(L, N) = true) ⇔ (L is the
left sibling of N).

(iii) first ⊆ N , (first(X) = true)⇔ (X is the first child
of its parent node).

(iv) last ⊆ N , (last(X) = true)⇔ (X is the last child
of its parent node).

(v) tagσ ⊆ N , (tagσ (N) = true) ⇔ (σ is the tag of
node N).

A pattern vertex is mapped to a logic variable. The
query defines a predicate with variables derived from
the pattern extraction vertices, one variable per pat-
tern vertex. Merging involves renaming with identical
names the variables corresponding to paired pattern ver-
tices and then taking the conjunction of queries corre-
sponding to merged patterns. Now, by simple relational
manipulation, it is easy to see that the result stated by
Proposition 4 holds.

3.3 Formal definition of L-wrappers

An L-wrapper can be defined formally as a set of extrac-
tion patterns that share the set of attribute names.

L-wrappers: concepts, properties and construction 761

Definition 11 (L-wrapper) An L-wrapper of arity k is
a set of n ≥ 1 patterns W = {pi|pi = 〈Vi, Ai, Ui, D, µi,
λai , λci〉, pi has arity k, for all 1 ≤ i ≤ n}. The set of tuples
extracted by W from a labeled ordered tree t is the union
of the sets of tuples extracted by each pattern pi, 1 ≤ i ≤ n,
i.e. Ans(W, t) = ∪n

i=1Ans(pi, t).

Let us consider for example the problem of extracting
printer information from Hewlett Packard’s Web site.
The printer information is represented in multi-section
two column HTML tables (see Fig. 4). Each row con-
tains a pair (feature name, feature value). Consecutive
rows represent related features that are grouped into
feature classes. For example, there is a row with the fea-
ture name ‘Print technology’ and the feature value ‘HP
Thermal Inkjet’. This row has the feature class ‘Print
quality/technology’. So actually this table contains tri-
ples (feature class, feature name, feature value). Some
triples may have identical feature classes.

Moreover, let us consider also two single-pattern L-
wrappers for this example inspired from [6,7] that were
learnt using FOIL program [26]: (i) for pairs (feature
class, feature name); (ii) for pairs (feature name, feature
value). The wrappers are shown in Fig. 5 (FC = fea-
ture class, FN = feature name, FV = feature value). That
figure illustrates the two patterns and also the pattern
resulted from their merging. One can easily notice that
these patterns are already in normal form.

4 Semi-automatic construction of L-wrappers

Manual construction of L-wrappers is a difficult and
time consuming process that would require a very care-
ful examination of target documents to identify correct
extraction patterns. Fortunately it is possible to employ
standard machine learning techniques, like inductive
logic programming, to semi-automatic construction of
L-wrappers. This problem is the focus of the current
section of the paper.

4.1 Overview of the extraction process

We consider a Web data extraction scenario which as-
sumes the manual execution of a few extraction tasks by
the human user. An inductive learning engine could then
use the extracted examples to learn a general extraction
rule that can be further applied to the current or other
similar Web pages.

We propose a generic data extraction process that is
structured into the following sequence of stages:

(i) Crawl or browse the Web and download HTML pages
of interest. This step is quite straightforward. Either a
human user is browsing the Web to download inter-
esting pages or the task of Web navigation and page
download is automatized by means of a crawler com-
ponent [10]. The result of this step is a collection of
pages that were fetched from the Web and stored on
the user machine into a local repository.

(ii) Preprocess and convert the document from HTML to
XHTML. In this step the input HTML document is
cleaned and converted to a well-formed XML docu-
ment written in XHTML and structured as a tree.

(iii) Manually extract a few examples. In this step the user
loads a few XHTML pages from the local repository
and performs a few extraction tasks. The result is
a set of annotated XHTML documents with special
markups for the extracted items.

(iv) Parse the annotated XHTML documents and gener-
ate a suitable representation as input for the learner.
In this step the annotated XHTML documents are
parsed and converted into an appropriate input for
the learning program.

(v) Apply the learning algorithm and obtain the wrapper.
In this step the learning program is executed on the
input generated in the previous step. The result is a
specification of the wrapper.

(vi) Compile the wrapper into a suitable implementation
language. In this step the wrapper specification is
mapped to a declarative or procedural implementa-
tion language thus enabling the efficient execution
of the wrapper.

(vii) Execute the wrapper to extract new data. In this step
the user applies the wrapper to new XHTML pages
in order to automatically extract new data.

4.2 Relational representation of document trees

We propose the use of general-purpose inductive
logic programming for semi-automatic generation of
L-wrappers. In particular, in the next section we shall
describe the use of FOIL program for performing this
task. One prerequisite for this is to devise a relational
representation of XHTML documents.

An XHTML document is composed of a structural
part and a content part.

The structural part consists of the set of document
nodes or elements. The document elements are nested
into a tree like structure. Each document element has
assigned a specific tag from a given finite set of tags �.
There is a special tag text ∈ � that designates a text
element.

762 C. Bădică et al.

Fig. 4 An XHTML
document fragment and its
graphic view

Fig. 5 Patterns and pattern merging

The content part of a document consists of the actual
text in the text elements and the attribute-value pairs
attached to the other document elements.

The structure of XHTML documents can be repre-
sented as unranked ordered trees, also known as �-trees.
The set T� of �-trees is defined inductively as follows:

(i) if σ ∈ � then σ ∈ T� ;
(ii) if σ ∈ � and t1, . . . , tn ∈ T� , n ≥ 1 then σ(t1, . . . ,

tn) ∈ T� .

Note that there is no a priori bound on the number of
children of a node in a �-tree, i.e. the tree is unranked,
and note also that the set of children of a given node in
a �-tree is ordered, i.e. the tree is ordered.

Recall that our task in this section was to devise a
relational representation for an XHTML document tree.
We assign a unique identifier (an integer value) to each
node of the tree. Let N be the set of all node identi-
fiers. In what follows a node is identified by its unique
identifier.

L-wrappers: concepts, properties and construction 763

The structural component of an XHTML document
tree can be represented using the following five rela-
tions:

(i) child ⊆ N ×N defined as:
(child(P, C) = true)⇔ (P is the parent of C).

(ii) next ⊆ N ×N defined as:
(next(L, N) = true)⇔ (L is the left sibling of N).

(iii) tagσ ⊆ N , σ ∈ � defined as:
(tagσ (N) = true)⇔ the tag of node N) is σ .

(iv) first ⊆ N defined as:
(first(X) = true)⇔ (X is the first child of its parent
node).

(v) last ⊆ N defined as:
(last(X) = true)⇔ (X is the last child of its parent
node).

Consider the Hewlett Packard’s site of electronic
products3 and the task of IE from a product information
sheet for printers. The printer information is displayed
in a two-column table as a set of feature-value pairs.
Our task is to extract the names and/or the values of the
printer features. This information is stored in the leaf
elements of the page. Figure 6 displays in the left panel
the XHTML tree of a fragment of this document and
in the right panel the graphical view of this fragment
as a two-column table. Figure 7 displays this XHTML
document fragment as a �-tree.

The right panel of Fig. 7 displays a part of the rela-
tional representation of the XHTML document tree
shown on the left panel.

The relational representation of document trees intro-
duced in this section makes convenient the definition of
first-order data extraction rules. A rule for extracting a
data item with k attributes defines a relation extract ⊆
N k such that (extract(N1, . . . , Nk) = true) ⇔ ((N1, . . . ,
Nk) is an extracted tuple of k nodes).

The definition of a data extraction rule consists of a
set of clauses. The head of a clause is extract(N1, . . . , Nk)

and the body of a clause is a conjunction of positive
and negative literals made of the relations child,
next, and tagσ . Following the observation that an extrac-
tion pattern can be mapped to a conjunctive query over
the signature (child, next, first, last, (tagσ)σ∈�), it is not
difficult to see that a data extraction rule corresponds
to an extraction pattern and each argument of rela-
tion extract corresponds to an extraction vertex of this
pattern.

For example, assuming that we want to extract all
the text nodes of the XHTML document from Fig. 4

3 http://www.hp.com

that have a grand–grand–parent of type table that has a
parent that has a right sibling, we can use the following
extraction rule:

extract(A)←
text(A) ∧ child(B, A) ∧ child(C, B)∧
child(D, C) ∧ table(D) ∧ child(E, D)∧
next(E, F)

Manual writing of data extraction rules is a slow and
difficult process requiring a careful analysis of the struc-
ture of the target XHTML document. We propose to
learn these rules with a general purpose relational learn-
ing program.

4.3 Using FOIL to learn extraction rules

First order inductive learner (FOIL) is a general purpose
first order (also known as relational) inductive learning
program developed by John Ross Quinlan and his team
at the beginning of the 1990s [26]. Even if it is not in
the scope of the paper to give a detailed description of
how FOIL works, we decided to give a brief overview
of first order inductive learning in order to make the
paper self contained. For more details see [26] and [24]
(Chapter 10).

In first order inductive learning the training data com-
prises the following two parts:

(i) The target relation, i.e. the relation that is learnt.
It is defined extensionally as a set of tuples. Usu-
ally the tuples are partitioned into a set of positive
tuples and a set of negative tuples.

(ii) The background relations, usually defined exten-
sionally as sets of tuples.

The goal of first order inductive learning is to con-
struct a logic program that represents an appropriate
intensional definition of the target relation in terms of
the background relations and, optionally itself, if recur-
sive definitions are allowed. The learnt definition must
cover all the positive tuples (or a large fraction of them)
and no negative tuples (or a small fraction of them) from
its extensional definition.

The FOIL requires as input the information about
the target and the background relations, as mentioned
above, and the definition of the relations arguments
types, as sets of constants. FOIL’s output is a set of
clauses that represents a disjunctive definition of the tar-
get relation. The set of clauses is constructed iteratively,
one clause at a time, removing all the covered positive
tuples until an empty set remains. Every clause is con-
structed using an heuristic hill climbing search strategy
that is guided by the information gain, determinate lit-
erals and the clause complexity (see [26] for details).

764 C. Bădică et al.

Fig. 6 An XHTML document fragment and its graphic view

Fig. 7 The structure of the
XHTML fragment from
Fig. 4 represented as a �-tree
and a part of its relational
representation

An important step is to prepare the input for FOIL.
In what follows we assume that during the training stage
the user selects one or more XHTML documents, and
performs a few extraction tasks on them. These docu-
ments are assembled into a single XML document – the
training document, by concatenating them under a new
root element. The problem is to map these training data
into input for FOIL.

First, we must define the relations arguments types.
We used a single type that represents the set N of all
the nodes found in the training document. Second, we
must define the target relation extract. We used only the
nodes extracted during the training stage from the train-
ing document, as the set of positive examples. FOIL uses
the closed world assumption (CWA) by considering all
the other nodes in the training document as negative
examples. Third, we must define the background rela-
tions next and tagσ .

Additionally, FOIL can be parameterized from the
command line. All the parameters have default values,

but we found useful to control explicitly the following
options:

(i) The use or not of negative literals in the body of a
clause.

(ii) The maximum variable depth in literals. Variables
occurring in the clause head have depth 0 and a
new variable in the literal has depth one greater
than the maximum depth of its existing variables.

(iii) And finally, to set the minimum clause accuracy
to an appropriate value. The clause accuracy rep-
resents the percentage of the positive tuples from
the set of all tuples covered by the relation. FOIL
will not accept any clause with an accuracy lower
than this value.

We consider a FOIL example taken from our experi-
ments. The input is split into the following sections: argu-
ment types (N), target relation (extract, only positive

L-wrappers: concepts, properties and construction 765

examples), and background relations (child, next, table,
. . ., span). In this example we assume the extraction of
single items (i.e. tuples of arity k = 1).

#N: 0,1,2,3,4, ..., 1096,1097.

extract(N)
1004
1006
...
1056
1058
.
*child(N,N)
0,1
0,2
1,3
1,4
...
1094,1097
.
*next(N,N)
1,2
3,4
...
1091,1092
.
*table(N)
26
27
...
991
.
...
*span(N)
250
251
...
980
.

For example, a FOIL command-line that we used in
our experiments, is:

foil -d8 -a40 -v3 <ex10.d >ex10.o

The parameter d8 is used for setting the maximum var-
iable depth to 8. The parameter a40 is used for setting
the minimum clause accuracy to 40%. The parameter
v3 is used to set the level of verbosity of FOIL’s output
to 3 (minimum is 0 and maximum is 4), i.e. the output
will include quite detailed information about the FOIL’s
search process. The parameters ex10.d and ex10.o
are the input and output files.

4.4 Experiments and results

4.4.1 Software tools

We have developed a set of prototype software tools
to support our experiments with learning L-wrappers.
The tool set implements the scenario outlined at the
beginning of this section.The tool set incorporates the
following on-the-shelf software components:

(i) The machine learning program FOIL. This compo-
nent is called from the main program through a com-
mand line.

(ii) The Xerces4 library for XML processing. This com-
ponent is used to read an XHTML document into a
DOM tree. The DOM tree is then mapped onto the
format required as input for FOIL using a breadth-
first traversal.

(iii) The Tidy5 library for HTML document cleaning and
pre-processing. This component is used in the pre-
processing stage of HTML documents for converting
them to XHTML. We have also developed a custom
XSLT stylesheet to remove redundant HTML ele-
ments like script and style.

4.4.2 Single-item extraction using CWA

We ran a series of experiments on the Hewlett Packard’s
Web site. The task was to extract the printer’s feature
values from their information sheets.

We selected an experimental set of 30 documents rep-
resenting information sheets for HP printers. The printer
information is represented in two column HTML tables
(see Fig. 4). The feature values are stored in the sec-
ond column. Each of the selected documents contains
between 28 and 38 features.

We used training examples from a single document
representing the information sheet of the HP Business
Inkjet 2600 (C8109A) printer. This document contains
28 positive examples and a total of 1,098 nodes. We per-
formed learning experiments with 1, 2, 3, 4, 12, 24 and
28 positive examples selected from this set. The results
of the learning stage were applied to all of the 30 doc-
uments, measuring the precision and recall indicators.
These values were computed by averaging the precision
and recall for each individual document.

4 http://xml.apache.org/xerces2-j/index.html.
5 http://www.w3c.org/People/Ragget/tidy/.

766 C. Bădică et al.

The experiments were divided in two classes:

(i) In the first class we have ignored the next relation
as a background relation of FOIL’s input.

(ii) In the second class we have added the next rela-
tion to the set of background relations of FOIL’s
input.

For each class of experiments we have varied explic-
itly the following parameters: the use or not of negated
literals in rule bodies (FOIL parameter), the minimum
clause accuracy (FOIL parameter), and the number of
positive examples. We also set the maximum variable
depth to 8 and used the closed world assumption to let
FOIL generate the set of negative examples in all the
experiments.

The results of the experiments in the first and second
class are summarized in Tables 1, 2 respectively.

This example shows the rule learnt for our printer
data case in Experiment 16 from Table 2.

extract(A)← child(B, A) ∧ text(A) ∧ td(B)∧
¬next(A, _1) ∧ ¬next(_1, A) ∧ child(C, B)∧
child(D, C) ∧ ¬next(_1, C) ∧ child(E, D)∧
child(F, E) ∧ ¬next(F, _1) ∧ ¬next(E, _1)

Note that if X is an unbound variable and Y is a bound
variable then¬next(X, Y) = true means that Y is instan-

Table 1 Experiments without the use of the background relation
next
Experiment Neg. lit. No. of pos. Clause Precision Recall

no. examples acc.(%)
1 No 12 10 0.334 0.980
2 Yes 12 0 0.355 1
3 No 24 20 0.334 0.980
4 Yes 24 0 0.409 0.970
5 No 28 20, 30 0.334 0.980
6 Yes 28 0, 20 0.409 0.970

Table 2 Experiments with the use of the background relation next

Experiment Neg. lit. No. of pos. Clause Precision Recall
no. examples acc. (%)

1 No 1 0 0.332 1
2 Yes 1 0 0.411 1
3 No 2 0 0.730 0.800
4 Yes 2 0 0.440 1
5 No 3 0, 5 0.698 1
6 Yes 3 0 0.440 1
7 No 4 0 0.332 1
8 No 4 10 0.730 0.800
9 Yes 4 0 0.448 1

10 No 12 20, 40 0.855 0.800
11 Yes 12 20 1 0.800
12 No 24 20 0.698 1
13 No 24 60 0.855 0.800
14 Yes 24 80 (default) 1 0.800
15 No 28 80 (default) 0.855 0.800
16 Yes 28 80 (default) 1 1

tiated with the first child node of its parent node. There-
fore we can replace ¬next(X, Y) with first(Y). Similarly,
if X is a bound variable and Y is an unbound variable
then ¬next(X, Y) = true means that Y is instantiated
with the last child node of its parent node. Therefore
we can replace ¬next(X, Y) with last(X). According to
these observations, the rule shown before can be rewrit-
ten without negations:

extract(A)← child(B, A) ∧ text(A) ∧ td(B)∧
last(A) ∧ first(A) ∧ child(C, B) ∧ child(D, C)∧
first(C) ∧ child(E, D) ∧ child(F, E)∧
last(F) ∧ last(E)

After a careful analysis of the results of our experi-
ments, the following conclusions were drawn:

(i) In all the experiments with the precision lower than
0.500 the learnt rule also extracted the feature name
of every extracted feature value. This explains the
low values of the precision in these experiments.

(ii) The low precision values in the experiments of the
first class clearly shows the importance of exploit-
ing the information conveyed by the next relation
for data extraction from tree structured documents.

(iii) The use of negated literals in rule bodies improves
significantly the precision of the rules in the case
of using the next relation. But note that in all the
experiments the use of ¬ could be replaced with
predicates last and first.

(iv) The learnt rules were able to extract all the fea-
ture values (i.r. recall was 1) even when for training
was used a single positive example. This indicates
a minimum user effort to manually extract a single
item from the training document.

(v) In the case when we used for training as positive
examples all the fields that must be extracted from
the training document and we allowed the presence
of negated literals in rule bodies, the precision and
recall were 1.

4.4.3 Explicit enumeration of negative examples

The use of CWA has the advantage that the negative
examples do not have to be explicitly enumerated. But
this has also a serious drawback: if only a part of the
relevant items are annotated and used as positive exam-
ples (i.e. the user has manually extracted some, but not
all the useful items) then, by applying CWA, the set of
negative examples will also include the rest of the items
to be further extracted.

One approach to avoid this is to let the user explicitly
indicate one or more fragments of the training docu-
ment where the relevant information is located and then

L-wrappers: concepts, properties and construction 767

explicitly generate the negative examples by excluding
all the items inside these fragments. For example, for the
HP printer information sheets, the relevant information
is located in the table with the list of printer features.

We performed experiments with this approach and
compared the results with the CWA approach, using the
same training document and the same sets of items man-
ually annotated. In all the experiments with 6 or more
positive examples (allowing the use of negated literals),
the values of precision and recall were 1.

4.4.4 Using first and last

Analyzing the wrappers learnt in the previous experi-
ments we noticed that all the occurrences of¬next could
be replaced with last and first. Taking also into account
that the computation of the best literal during the top-
down learning process is very expensive, we thought to
improve a bit the learning time by combining first and
last in the document representation with no negated lit-
erals in the learnt clauses. The results are reported in
Table 3.

4.4.5 Tuples extraction

Learning rules for tuple extraction proceeds similarly
with the single item case. The difference is that the
extract relation is now described as a list of positive and
negative tuples rather than a list of positive and negative
items.

We performed experiments of learning L-wrappers
for extracting printer information from Hewlett Pack-
ard’s Web site. The information is represented in two
column HTML tables (see Fig. 4). Each row contains
a pair (feature name, feature value). Consecutive rows
represent related features and are grouped in feature
classes. For example there is a row with the feature name
‘Print technology’ and the feature value ‘HP Thermal
Inkjet’. This row has the feature class ‘Print quality/tech-
nology’. So actually this table contains triples (feature
class, feature name, feature value). Some triples may
have identical feature classes.

In what follows we consider two experiments: (i) tu-
ples extraction from flat information resources, exem-

Table 3 Experiment with first and last and no negated literals

Experiment no. No. pos. ex Cl. acc. (%) Prec. Rec.
1 1 0 0.436 1
2 3 0 0.448 1
3 4 0 , 10 1 1
4 12 20 , 40 1 0.800
5 24 20 , 60 1 1
6 28 80 1 1

plifying with pairs (feature name, feature value); (ii)
coping with hierarchical information by extracting pairs
(feature class, feature name). We have used the same test
data as before, only the learning tasks were changed. We
used examples from a single training document with 28
tuples.

Tuples extraction from flat information resources We
performed an experiment of learning to extract the tu-
ples containing the feature name and feature value from
HP printer information sheets. The experimental results
are reported in Table 4, row 1.

Because the number of tuples exceeds the size of
FOIL’s default tuple space, we explicitly set this size to
a higher value (300,000) and we used a random sample
representing a fraction of the negative examples in the
learning process.

The L-wrapper learnt consisted of a single clause
(FN = feature name, FV = feature value):

extract(FN, FV)← tag(FN, text) ∧ text(FV)∧
child(C, FN) ∧ child(D, FV) ∧ child(E, C)∧
child(H, G) ∧ child(I, F) ∧ child(J, I) ∧ next(J, K)∧
child(F, E) ∧ child(G, D) ∧ first(J)∧
child(K, L) ∧ child(L, H).

This rule extracts all the pairs of text nodes such that
the grand–grand–grand–grandparent of the first node
(J) is the first child of its parent node and the left sibling
of the grand–grand–grand–grandparent of the second
node (K).

Tuples extraction from hierarchical information
resources The idea of modeling nested documents using
a relational approach and building wrappers according
to this model is not entirely new; see [18].

In this section we present an experiment of learn-
ing to extract pairs (feature class, feature name) from
printer information sheets. Note that because we may
have many features in the same class, the information is
hierarchically structured. The experimental results are
reported in Table 4, row 2.

The L-wrapper learnt consisted of a single clause
(FC = feature class, FN = feature name):

extract(FC, FN)← child(C, FC) ∧ child(D, FN)∧
span(C) ∧ child(E, C) ∧ child(F, E) ∧ next(F, G)∧
child(H, G) ∧ last(E) ∧ child(I, D) ∧ child(J, I)∧
child(K, J) ∧ child(L, K) ∧ next(L, M)∧
child(N, M) ∧ child(H, N).

There is one difference from the flat case – how
examples are collected. In this case, some examples will
share the feature class. Moreover, in the general case,

Table 4 Experiments with tuples extraction

Experiment no. No. pos. ex Frac. neg. ex (%) Prec. Rec. No.lit.
1 24, 28 20 0.959 1 14
2 24, 28 20 1 1 15

768 C. Bădică et al.

some fields will need to be selected repeatedly during
the manual extraction process (like the feature class in
the printer example). This can be avoided by design-
ing the graphical user interface that guides the example
selection such that the tuple previously selected is al-
ways saved and thus its fields may be reused in the next
selection.

Discussion In our experiments we used CWA to
generate the negative examples. This means that each tu-
ple not given as positive example, automatically counts
as negative example. Let d be the size of the training doc-
ument (i.e. the number of nodes) and let k be the tuple
arity. The number of negative examples is proportional
with dk, i.e. it is exponential in the tuple arity. For exam-
ple, our documents had about 1,000 nodes. This means
that for tuples of arity 3, the total number of negative
examples is about 109.

For this reason we had problems with learning to ex-
tract tuples of arity greater than 2. Because the number
of negative examples exceeded the memory available,
we were forced to use for learning a random sample
representing a very small fraction (less than 0.1%) of
the total number of the negative examples. This had the
effect of producing wrappers with a very low precision.

Finally, note that the two wrappers presented here for
extracting pairs (feature class, feature name) and (fea-
ture name, feature value) correspond to patterns p2 and
p1 from Fig. 5. However, applying the pattern merg-
ing operator, it is possible to obtain an L-wrapper for
extracting triples (feature class, feature name, feature
value). Generalizing, it follows that in order to learn a
wrapper to extract tuples of arity k ≥ 3, we can learn
k− 1 wrappers to extract tuples of arity 2 and then use
the pattern merging operator to merge them, rather than
learning the wrapper in one shot.

The idea of pattern merging presented here is an ap-
proach of learning extraction patterns of a higher arity
that overcomes these difficulties, and thus supporting
the scalability of our approach.

5 Mapping L-wrappers to XSLT

In this section we are focusing on the last two stages
of the data extraction process: wrapping compilation
and wrapper execution. We have chosen to express L-
wrappers into XSLT – a standard language for the trans-
formation of XML documents [12].

5.1 Mapping algorithm

Paper [9] describes a subset of XSLT, called XSLT0,
that has a Plotkin-style formal semantics. The reader is

invited to consult reference [9], for details on XSLT0, its
pseudocode notation and the formal semantics.

Let us consider an L-wrapper W = {p1, p2, . . . , pn}.
Each pattern pi is mapped to an XSLT stylesheet that is
expressed in XSLT0, so, in what follows, we shall focus
only on the mapping of a single pattern to a stylesheet.

Let us consider a pattern p = 〈V, A, U, D, µ, λa, λc〉
and let L ⊆ V be the leaves of its graph (i.e. verti-
ces with in-degree 0). The idea is to generate XSLT0
templates for all the leaf and extraction vertices (i.e.
elements of L ∪ U) of the L-wrapper, moving upwards
and downwards in the graph and generating appropri-
ate XPath expressions [30]. The extracted information
is passed between templates by means of template vari-
ables and parameters. Here is an informal description of
this algorithm:

Step 1 Start from the document root and generate
the start template, by moving downwards to one of the
vertices in L ∪U.

Step 2 Move from the current vertex (say w0) to an-
other vertex in L∪U (say w1). The path taken depends
on the type of the first vertex: if w0 ∈ L then we move
first upwards, to the common ascendent of w0 and w1
and then downwards to w1; if w0 �∈ L then we follow the
direct descendent path to w1.

Step 3 Generate a template that will select the content
of w0 in case w0 ∈ U.

Step 4 Repeat Steps 2 and 3 until there are no more
unvisited vertices in L ∪U.

Step 5 Generate the final template, which will display
the extracted tuples.

The XSLT0 description of the single-pattern wrapper
resulted from merging patterns p1 and p2 from Figure 5
is shown in Table 5.6 The XSLT wrapper is shown in
the Appendix. XPath expressions xp1, xp2 and xp3 are
defined as follows:

xp1 = //*/*/preceding-sibling::*[1]/*[last()]/span/node()

xp2 = parent::*/parent::*/parent::*/

following-sibling::*[1]/parent::*/*/*/

preceding-sibling::*[1][last()]/*/*/*/*/text()

xp3 = parent::*/parent::*/parent::*/parent::*/parent::*/

following-sibling::*[1]/*/*/*/*/text()

An informal argument why this mapping works cor-
rectly is in place. Referring to Fig. 5, we start from
the document root, labeled with html, then match node
H and move downwards to FC, then move back up-
wards from FC to H and downwards to (FN, FN′), and
finally move back upwards from (FN, FN′) to (M, K′)
and downwards from (M, K′) to FV′. The wrapper
actually extracts the node contents rather than the
nodes themselves, using the content(.) expression.

6 Note that our version of XSLT0 is slightly different from the
one presented in [9].

L-wrappers: concepts, properties and construction 769

Table 5 Description of the sample wrapper in XSLT0 pseudocode

The extracted information is passed between templates
in template variables and parameters varClass and
varName.

5.2 An example: mining travel resources

E-tourism is a leading area in e-commerce, with an
increasing number of travel agencies offering their ser-
vices through online transaction brokers [21]. They pro-
vide to human users information in areas like hotels,
flights, trains or restaurants, in order to help them to
plan their business or holiday trips. The travel infor-
mation is heterogeneous and distributed, and there is a
need to gather, search, integrate and filter it efficiently
[17].

We now demonstrate the use of L-wrappers to extract
travel information from the Travelocity Web site7 (see
Fig. 8). That Web page displays hotel information com-
prising the hotel name, address and description, the
check-in and check-out dates, the types of rooms offered
and the corresponding average nightly rate. Adopting
the relational model, we associate to this resource the
following set of attribute names related to hotels: {name,
address, description, period, roomtype, price}.

Because of the relatively large number of attributes,
we used the pattern merging approach. The following
pairs of attributes were chosen: {name, address},
{address, description}, {name, period}, {period,
roomtype}, and {roomtype, price}.

Then we generated extraction rules for each pair of
attributes by using the FOIL program. The following
5 rules were generated: (NA = name, AD = address,
DE = description, PE = period, RO = roomtype, and
PR = price):

extract(NA, AD)← first(AD) ∧ td(AD) ∧ child(C, NA)∧
child(D, AD) ∧ next(D, E) ∧ child(F, E) ∧ span(C)∧
first(D) ∧ child(G, C) ∧ child(H, G) ∧ next(I, H) ∧ child(J, I)∧
child(K, F) ∧ child(L, K) ∧ child(M, J) ∧ child(N, M)∧
child(O, L) ∧ child(P, O) ∧ child(Q, P) ∧ child(N, Q).

extract(AD, DE)← child(C, AD) ∧ child(D, DE) ∧ next(AD, E)∧
next(C, F) ∧ child(G, F) ∧ child(F, D) ∧ first(G) ∧ text(DE).

extract(NA, PE)← text(NA) ∧ child(C, NA) ∧ child(D, PE)∧

7 http://www.travelocity.com

next(E, D) ∧ child(F, E) ∧ b(D) ∧ child(G, C) ∧ child(H, G)∧
next(I, H) ∧ child(J, I) ∧ child(K, J) ∧ next(K, L)∧
next(L, M) ∧ child(M, N) ∧ child(O, F)∧
child(P, O) ∧ child(N, P).

extract(PE, RO)← child(C, PE) ∧ child(D, RO) ∧ next(D, E)∧
next(F, C) ∧ child(G, E) ∧ child(H, F) ∧ next(I, G)∧
child(J, I) ∧ next(K, J) ∧ first(D) ∧ child(K, L) ∧ child(L, H).

extract(RO, PR)← child(C, RO) ∧ child(D, PR) ∧ next(C, E)∧
next(D, F) ∧ child(G, E) ∧ next(H, G) ∧ child(I, H)∧
next(J, I) ∧ child(G, D) ∧ first(C) ∧ last(F) ∧ text(PR).

Next we merged these patterns into a single-pattern
L-wrapper and then we translated it into XSLT0 using
the algorithm outlined before. A set of seven XSLT0
templates was obtained (see Table 6).

XPath expressions xp1, xp2, xp3, xp4, xp5 and xp6 of
the wrapper from Table 6 are defined as follows:

xp1 = //*/*/*/*/following-sibling::*[1]/span/text()

xp2 = parent::*/parent::*/parent::*/preceding-sibling::*[1]/

parent::*/parent::*/following-sibling::*[2]/*/*/*/*/*/

following-sibling::*[1][local-name()=’b’]/*

xp3 = parent::*/preceding-sibling::*[1]/parent::*/parent::*/

parent::*/parent::*/parent::*/preceding-sibling::*[2]/

parent::*/*/*/*/*/*/*[position()=1]/*/*/text()

xp4 = parent::*/parent::*/preceding-sibling::*[1]

[position()=1]/*[position()=1 and local-name()=’td’

and following-sibling::*[1]]

xp5 = parent::*/following-sibling::*[1]/parent::*/parent::*/

parent::*/parent::*/parent::*/parent::*/parent::*/*/

following-sibling::*[2]/*/*/following-sibling::*[1]/

/following-sibling::[1]/*[position()=1 and

following-sibling::*[1]]/*

xp6 = parent::*/following-sibling::*[1]/parent::*/

*[position()=last()-1]/text()

For wrapper execution we can use any of the available
XSLT transformation engines. In our experiments we
have used Oxygen XML editor (see Fig. 9), a tool that
incorporates some of these engines. The experimental
results confirmed the efficacy of the approach: values
0.87 and 1 were recorded for precision and recall mea-
sures.

6 Conclusions and future work

In this paper we studied a new class of wrappers for
data extraction from semi-structured sources inspired
by logic programming – L-wrappers. This study is
supplemented with a description of some guidelines and
experimental results in the area of semi-automatic con-
struction of L-wrappers. In particular, we described how
to apply first-order inductive learning to generate L-
wrappers and how to map the resulting extraction rules
to XSLT for efficient data extraction from Web sources.
The results of this work provide also some theoretical
insight into L-wrappers and their patterns, thus enabling
the link of our work with related works in this field. As
future work we plan to implement these ideas into an
information extraction tool and also to give a formal
proof of the correctness of the mapping of L-wrappers
to XSLT.

770 C. Bădică et al.

Fig. 8 An XHTML
document fragment and its
graphic view

Fig. 9 Wrapper execution inside Oxygen XML editor

Appendix

AXSLT code of the sample wrapper

<?xml version="1.0" encoding="UTF-8" ?> <xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="html">

<result>

<xsl:apply-templates mode="selclass" select="//*/*/

preceding-sibling::*[1]/*[last()]/span/node()"/>

</result>

</xsl:template>

<xsl:template match="node()" mode="selclass">

<xsl:variable name="var_class"> <xsl:value-of

select="normalize-space(.)"/>

</xsl:variable>

<xsl:apply-templates mode="selname" select="parent::*/

parent::*/parent::*/following-sibling::*[1]/parent::*/

//preceding-sibling::*[1][last()]/*/*/*/*/text()">

<xsl:with-param name="var_class" select="$var_class"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="node()" mode="selname">

<xsl:param name="var_class"/>

<xsl:variable name="var_name">

L-wrappers: concepts, properties and construction 771

Table 6 Description of the
sample wrapper in XSLT0
pseudocode

<xsl:value-of select="normalize-space(.)"/>

</xsl:variable>

<xsl:apply-templates mode="display" select="parent::*/

parent::*/parent::*/parent::*/parent::*/

following-sibling::*[1]/*/*/*/*/text()">

<xsl:with-param name="var_class" select="$var_class"/>

<xsl:with-param name="var_name" select="$var_name"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="node()" mode="display">

<xsl:param name="var_class"/>

<xsl:param name="var_name"/>

<xsl:variable name="var_value">

<xsl:value-of select="normalize-space(.)"/>

</xsl:variable>

<triple>

<xsl:attribute name="class">

<xsl:value-of select="$var_class"/>

</xsl:attribute>

<xsl:attribute name="name">

<xsl:value-of select="$var_name"/>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:value-of select="$var_value"/>

</xsl:attribute>

</triple>

</xsl:template>

</xsl:stylesheet>

References

1. Anton T (2005) XPath-wrapper induction by generalizing
tree traversal patterns. In: Mathias Bauer, Boris Brand-
herm, Johannes Fürnkranz, Gunter Grieser, Andreas Hotho,
Andreas Jedlitschka, Alexander Krner (eds) Lernen, Wis-
sensentdeckung und Adaptivitt (LWA) 2005, GI Workshops,
Saarbrcken, pp 126–133

2. Baumgartner R, Flesca S, Gottlob G (2001) The Elog web
extraction language. In: Nieuwenhuis R, Voronkov A (eds)

Proceedings of LPAR’2001, LNAI 2250, Springer, Berlin Hei-
delberg New York, pp 548–560

3. Baumgartner R, Frolich O, Gottlob G, Harz P, Herzog M,
Lehmann P (2005) Web data extraction for business
intelligence: the Lixto approach. In: Gottfried Vossen,
Frank Leymann, Peter C. Lockemann, Wolffried
Stucky (eds) Datenbanksysteme in Business, Tech-
nologie und Web, 11. Fachtagung des GI-Fachbereichs
“Datenbanken und Informationssysteme” (DBIS), Karsl-
rhue, Germany, 2005. Lecture Notes in Informatics,
vol 65, GI, pp 30–47

4. Bădică C, Bădică A (2004) Rule learning for feature val-
ues extraction from HTML product information sheets. In:
Boley H, Antoniou G (eds) Proceedings RuleML’04,
Hiroshima. LNCS, 3323 Springer, Berlin Heidelberg
New York pp 37–48

5. Bădică C, Popescu E, Bădică A (2005a) Learning logic wrap-
pers for information extraction from the Web. In: Papazog-
lou M, Yamazaki, K (eds) Proceedings of the SAINT’2005
Workshops. Computer Intelligence for Exabyte Scale Data
Explosion. IEEE Computer Society Press, Trento pp 336–339

6. Bădică C, Bădică A, Popescu E (2005b) Tuples extraction
from HTML using logic wrappers and inductive logic pro-
gramming. In: Szczepaniak, PS, Kacprzyk J, Niewiadomski A
(eds) Proceedings of the AWIC’05, Lodz, Poland. LNAI 3528
Springer, Berlin Heidelberg New York pp 44–50

7. Bădică C, Bădică A (2005) Logic wrappers and XSLT trans-
formations for tuples extraction from HTML. In: Bressan
S, Ceri S, Hunt E, Ives ZG, Bellahsene Z, Rys M, Unland
R, (eds) Proceedings, 3rd international XML database sym-
posium XSym’05, Trondheim LNCS 3671, Springer, Berlin
Heidelberg New York pp 177–191

8. Bernardoni C, Fiumara G, Marchi M, Provetti A (2006)
Declarative Web data extraction and annotation. 20th work-
shop on logic programming, WLP. Vienna, Austria

9. Bex GJ, Maneth S, Neven F (2002) A formal model for an
expressive fragment of XSLT. Inf syst Elsevier 27: 21–39

772 C. Bădică et al.

10. Chakrabarti S (2003) Mining the Web. Discovering knowledge
from hypertext data. Morgan Kaufmann Publishers

11. Chidlovskii B (2003) Information extraction from Tree doc-
uments by learning subtree delimiters. Proceedings of the IJ-
CAI-03 Workshop on Information Integration on the Web
(IIWeb-03), Acapulco, Mexico pp 3–8

12. Clark J (1999) XSLT transformation (XSLT) version 1.0.
W3C recommendation, 16 November 1999, http://www.w3.
org/TR/xslt2

13. Cormen TH, Leiserson CE, Rivest RR (1990) Introduction to
Algorithms. MIT Press, Cambridge

14. Freitag D (1998) Information extraction from HTML: applica-
tion of a general machine learning approach. In: Proceedings
of AAAI’98, pp 517–523

15. Gottlob G, Koch C, Schulz KU (2004) Conjunctive queries
over trees. In: Proceedings of the PODS’2004, Paris, France.
ACM Press, pp 189–200

16. Gottlob G, Koch C (2004) Monadic datalog and the expressive
power of languages for Web information extraction. J ACM
51 (1):74–113

17. Knoblock C (2002) Agents for gathering, integrating, and
monitoring information for travel planning. In: Intelligent sys-
tems for tourism. IEEE Intell Syst Nov./Dec.:53–66

18. Kushmerick N (2000) Wrapper induction: efficiency and
expressiveness. Artif intell, Elsevier 118:15–68

19. Laender AHF, Ribeiro-Neto B, Silva AS, Teixeira, JS (2002)
A brief survey of Web data extraction tools. In: SIGMOD
record, ACM Press, 31(2): 84–93

20. Laender AHF, Ribeiro-Neto B, Silva AS (2002b) DEByE –
data extraction by example. Data Knowl Eng 40 (2):121–154

21. Laudon KC, Traver CG (2004) E-commerce business technol-
ogy society (2nd edn.). Pearson Addison-Wesley, location

22. Lenhert W, Sundheim B (1991) A performance evaluation of
text-analysis technologies. AI Mag 12(3):81–94

23. Liu B, Grossman R, Zhai Y(2004) Mining web pages for data
records. IEEE Intell Syst Nov./Dec.:49–55

24. Mitchell TM (1997) Machine learning, McGraw-Hill, location
25. Oxygen XML Editor. http://www.oxygenxml.com/
26. Quinlan JR, Cameron-Jones RM (1995) Induction of logic

programs: FOIL and related systems. New Generation Com-
put 13:287–312

27. Sakamoto H, Arimura H, Arikawa S (2002) Knowledge dis-
covery from semistructured texts. In: Arikawa S, Shinohara A
(eds) Progress in discovery science. Lecture Notes in Com-
puter Science, 2281, Springer, Berlin Heidelberg New York
pp 586–599

28. Thomas B (2000) Token-templates and logic programs
for intelligent web search. Intelligent Information Systems.
Special Issue: Methodologies Intell Inf Syst 14(2/3):241–261

29. Xiao L, Wissmann D, Brown M, Jablonski S (2001) Informa-
tion extraction from HTML: combining XML and standard
techniques IE from the Web. In: Monostori L, Vancza J, Ali M
(eds) Proceedings of IEA/AIE 2001. Lecture Notes in Artifi-
cial Intelligence, 2070, Springer, Berlin Heidelberg New York
165–174

30. XML Path Language (XPath) Version 1.0 http://www.w3.2.
org/TR/xslt2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

