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Artificial Bee Colony Algorithm (ABCA) is a new population-based meta-heuristic approach inspired
by the foraging behaviour of bees. This article describes an application of a novel Hybrid Differ-
ential Artificial Bee Colony Algorithm (HDABCA), which combines Differential Evolution strategy
with Artificial Bee Colony algorithm. We illustrate the proposed method using several test functions
and also compared with classical differential evolution algorithm and artificial bee colony algorithm.
Simulation results illustrate that the proposed method is very efficient.
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1. INTRODUCTION

During the last few decades, many general-purpose opti-
mization algorithms have been proposed for obtaining
optimal solutions to intricate and complex optimization
problems sprouting in the arena of Engineering. Some of
these optimization techniques are evolution Strategies,23

Evolutionary Programming (EP),2 Genetic Algorithms
(GA),3 Particle Swarm Optimization (PSO),4 Differential
Evolution (DE),12 Bacterial Foraging Optimization Algo-
rithm (BFOA)26 and Artificial Bee colony algorithm5–7

etc. These algorithms are also Nature Inspired or Bio
Inspired Algorithms because they are based on the intel-
ligent simple rules of nature. These algorithms have been
successfully applied to a wide range of engineering design
problems.1�8–11�13–20�22–25

Differential Evolution (DE) is simple yet powerful evo-
lutionary algorithm (EA) for global optimization intro-
duced by Price and Stom.12 It has been successfully
been applied to many fields of science and engineering,
such as mechanical design, signal processing, chemical
engineering, machine intelligence and pattern recogni-
tion. According to recent studies DE outperforms many
other optimization methods in terms of convergence speed
and robustness over numerical benchmark functions and
real world problems.16 An artificial bee colony algorithm
(ABC) algorithm is one among the swarm intelligent based
algorithms which employs the intelligence of the foraging
behaviour of swarm of bees in solving numerical optimiza-
tion problems. ABC algorithm and its variants have been

∗Author to whom correspondence should be addressed.

applied successfully to unconstrained numerical optimiza-
tion problems.5–7 The experiments show that the extended
version of ABC algorithm has better performance than DE
and PSO.
Most of the population-based optimization algorithms,

suffer from long computational times because of their evo-
lutionary/stochastic nature. This crucial drawback some-
times limits their applications to offline problems with
little or no real-time constraints. So in order to obtain the
most of advantages of the nature inspired heuristic meth-
ods and to eliminate their disadvantages like premature
convergence and computational time, hybridization is per-
formed. In this article we proposed a new Hybrid Differ-
ential Artificial Bee Colony (HDABC), which combines
ABCA with Differential Evolution algorithm. The pro-
posed algorithm is tested on several benchmark functions
and also compared with the state-of the-art optimization
techniques like Differential Evolution and Artificial Bee
Colony Optimization algorithms.
The rest of paper is organized as follows. Section 2 deals

with ABC algorithm followed by Section 3, which presents
the essential concepts of DE and the hybrid method involv-
ing DE and ABC. Section 4 illustrates the performance
of the proposed approach on various benchmark functions.
Finally, a few conclusions are provided towards the end.

2. ARTIFICIAL BEE COLONY ALGORITHM

Honey bees live in extremely populous colony and main-
tain a unique elaborate social organization. These bees are
creatures of unexpected complexity-models of domestic-
ity, able to generate food, explore the food sources (flower
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patches), communicate through intricate dances. Their
colonies represent the ultimate socialist state, with com-
plete selflessness and redistribution of “income.” A Bee
Colony can be considered as swarm whose individual
social agents are bees. The exchange of information among
bees leads to the formation of tuned collective knowledge.
Virtually the bee colony consists of a single “queen bee,”
a few hundred drones (males), and tens of thousands of
workers (non-reproductive females). The queen is an egg
lying machine and a chemical factory, her job is to lay
eggs and start new colonies. She manipulates the behavior
of workers through various pheromones (chemical messen-
gers) by realizing them time to time. The sole function of
drones is to mate with queen bee and chased away during
times of food scarcity. The workers take the responsibil-
ity of comb construction, maintenance, brood care, clean-
ing the colony and foraging for nectar and pollen from
the environment to feed drones and queen. The success of
honey bees to maintain such large colonies lies in their
ability to efficiently harvest large but ephemeral sources
of pollen and nectar form flowers in their neighborhood.
Female (worker) bees goes probably at their early stages
of age, begin foraging for food making trip after trip.
The minimal model of forage selection that leads to the

emergence of collective intelligence of honey bee swarms
consists of three essential components: food sources,
employed foragers, unemployed foragers, and two lead-
ing models of the behavior, recruitment to a nectar source
and abandonment of a source. The value of food source
depends on several factors such as its proximity to the
nest, its richness or concentration of energy and ease
of extracting this energy. In other words, the “profitabil-
ity” of food source can be represented in single quantity.
Employed foragers are associated with a particular food
source, which are being exploited. They carry with them
information about this particular source such as its dis-
tance (and also direction) form nest and share this infor-
mation with certain probability. Unemployed foragers are
continually looking for a food source to exploit. There
are two types of unemployed foragers: scouts searching
the environment and surrounding the nest for new food
sources and onlookers waiting in the nest and searching a
food source through the information shared by employed
foragers.
The exchange of information among bees is most impor-

tant occurrence in the formation of collective knowl-
edge and this depends on communication. Communication
among bees related to the quality of food occurs in dancing
area of hive. This dance is called round dance or wag-
gle dance. The direction of the waggle run contains about
the direction of food. Employed foragers share their infor-
mation with a probability proportional to the food source
and sharing of this information through waggle dancing is
longer in duration. Hence the recruitment is directly pro-
portional to the profitability of the food source.

ABCA is a swarm intelligent optimization algorithm
inspired by honey bee foraging. It is a new optimizer
proposed by Karaboga for multivariable and multi-modal
continuous function optimization.5–7 The ABC algorithm
classifies the foraging artificial bees into three groups
namely employed bees, onlooker bees and scouts. The
first half colony consists of the employed bees and sec-
ond half consists of onlooker bees. For every food source,
there is only one employed bee and the employed bee of
abandoned food source becomes scout. In ABC algorithm,
each solution to the problem is considered as food source
and represented by a D-dimensional real-valued vector,
whereas the fitness of the solution corresponds to the nec-
tar amount of associated food resource. ABC algorithm is
also similar to other swarm intelligent based approaches
i.e., it is also an iterative process.
It starts with population of randomly distributed solu-

tions or food sources. The following steps are repeated
until a termination criterion is met.
(1) Calculate the nectar amounts by sending the employed
bees on to the food sources.
(2) After sharing the information from employed bees
select the food sources by the onlookers and determine the
nectar amount of food sources.
(3) Determine the scout bees and send them to find out
new food sources.

The main components of artificial bee colony algorithm
are explained as follows:

2.1. Parameters Initialization

The basic parameters of ABC algorithm are number of
food sources (FS) which is equal to number of employed
bees (ne) or onlooker bees (no), the number of trails after
which food source is assumed to be abandoned (limit) and
at last termination criterion. In the basic ABC algorithm,
the number of employed bees is set equal to number of
food sources in the population i.e., for every food source
there is one employed bee.

2.2. Population Initialization

The initial population of solutions is set to FS number
of randomly generated D-dimensional real-valued vectors
(i.e., food sources). Let the ith food source in the popu-
lation is represented by Xi = �xi1� xi2� � � � � xiD�� and then
each food source is generated by:

xij = lbj + r∗�ubj − lbj�

for j = 1�2�3 � � � �D andi = 1�2�3� � � � � F S

Where r is a random umber in range of [0 1]; lbj
and ubj are upper and lower bounds for the dimension j ,
respectively. These food sources are assigned randomly to
ne number of employed bees and their fitness values are
evaluated.

2 J. Comput. Theor. Nanosci. 9, 1–9, 2012
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2.3. Initialization of Bee Phase (Employed Bee)

In this stage, a new food source xnew is generated by each
employed bee xi in the neighbourhood of its present posi-
tion by using:

xnew = xij + r∗�xij −xkj� (1)

Where k ∈ �1�2�3� � � � � F S� such that k �= i and j ∈
�1�2�3� � � � �D� are randomly chosen indexes. r is an uni-
formly distributed random number in the range [−1 1].
Once the new solution is obtained, a greedy selection

mechanism is employed between the old and new candi-
date solutions i.e., obtained xnew is evaluated and compared
with xi. I the fitness of xnew is equal to or better than that
of xi, xnew will replace and becomes new member of pop-
ulation; otherwise xi is retained.

2.4. Onlooker Bee Phase

At this stage, onlooker bees evaluates the nectar informa-
tion taken from all of the employed bees and then selects
the food source xi depending on its probability value pi

calculated by:

pi =
fiti∑F S
k=1 fitk

Where fiti is the nectar amount (i.e., fitness value) of
the ith food source xi. From the above equation it is clear
that the higher fiti is, greater the probability of selecting
ith food source. Once a food source ith is selected by the
onlooker bee, she performs modification on xi using (1)
same in the case of employed bees. If the modified food
source has better or equal nectar amount than that of xi,
the modified food source will replace xi and become new
member of the population.
Let f �Xi� be the function to be minimized (i.e., here

ITAE is the objective function in this problem) then the
fitness is computed by:

fiti =
1

1+ f �Xi�

2.5. Scout Bee Phase

A food source xi is assumed to abandoned, if it cannot be
further improved through predetermined number of trails
(limit), and corresponding employed bee becomes scout.
The scout bee produces its food source randomly by mak-
ing use of this equation

xij = lbj + r∗�ubj − lbj� for j = 1�2�3 � � � �D

Where r is a random number in the uniform range of
[0 1].

2.6. Pseudo Code of ABC Algorithm

(1) Initialize the population of solutions xi� j
(2) Population is evaluated.
(3) FOR cycle= 1; REPEAT
(4) New solutions (food sources positions) yi� j in the
neighbourhood of xi� j are produced for the employed
bees (ne) using yi� j = xi� j + rand�i� j�∗ �xi� j −xk� j ��k is
the solution in the ith neighbourhood, rand�i� j� being a
random number in −1≤ rand ≤ 1) and evaluate them
(5) Store the best values between xi� j and vi� j after
greedy selection process
(6) Probability values Pi for different solutions of xi are
calculated by means of their fitness values using equation

pi =
fiti∑F S
k=1 fitk

Here fit represents the fitness values of solutions and
these are calculated using

fiti =
1

1+ f �Xi�

Then after Pi values are normalized into [0, 1]
(7) Based on the probabilities Pi, new solutions vi for
the onlookers are produced from the xi
(8) REPEAT Step-5
(9) Next, the abandoned solution (position or source) is
determined if exits, and it is replaced with a newly pro-
duced random solution xi for the scout as explained in
scout bee phase i.e., using

xij = lbj + r∗�ubj − lbj�

(10) Memorize the best food source solution obtained
so far
(11) cycle= cycle+1
(12) UNTIL cycle = Maximum;
(13) STOP

3. DIFFERENTIAL EVOLUTION

Differential Evolution an evolutionary algorithm, proposed
by Price and Storn,12 is simple yet powerful heuristic
method for solving non-linear, non-differentiable and multi
model optimization problems. Recently, DE algorithm has
gained a quite attention in the area of research related
to machine intelligence and cybernetics communities. Till
now Differential Evolution had found its application in
various fields of science and technology of which some of
them are pattern recognition and machine intelligence,13

Chemical engineering,14 design of fractional order con-
trollers, clustering etc.29–31 It had outperformed Genetic
algorithms (GA) and particle swarm optimization (PSO)
techniques over several benchmarks.15 Many of the most
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interesting advancing and recent developments in DE algo-
rithm design and applications can be found in.16

This technique combines the classical evolutionary oper-
ators such as mutation, crossover and selection with simple
arithmetic operator, which is based on differential vector
between two randomly chosen parameter vectors to evolve
the population. The basic idea behind DE is a scheme for
generating trail parameter vectors. Mutation and crossover
are used to generate new vectors (trial vectors), and selec-
tion then after determines which of the vectors have to be
survive for the next generation.

3.1. The Classical Differential Algorithm-An Outline

Differential evolution belongs to the class of evolutionary
algorithms and it has no exception in method of initializa-
tion process. As that of remaining evolutionary algorithm,
DE starts with NP D-dimensional parameter vectors rep-
resenting the candidate or individual solutions. The subse-
quent generations in DE is denoted by G= 0�1� � � � �Gmax.
Since the parameter vectors are likely to be change over
several generations, the following notation is used for rep-
resenting the ith vector of the population at the current
generation as

�Xi�G = �x1� i�G� x2� i�G� x3� i�G� � � � � xD� i�G	

For each parameter of the problem, there may be cer-
tain range within which the value of the parameter should
lie for more accurate search results at less computa-
tional cost. The initial population (at G= 0) should cover
the entire search space as much as possible by uni-
formly randomizing individuals within the search space
constrained by the prescribed maximum and minimum
bounds: �Xmax = �x1�max� x2�max� � � � � xD�max� and �Xmin =
�x1�min� x2�min� � � � � xD�min�. Hence the j-th component of
the i-th vector as.

xj� i�0 = xj�min+ randi� j �0�1� · �xj�max−xj�min�

where randi� j �0�1� is a uniformly distributed random
number lying between 0 and 1. DE’s strategy can be
described as follows.

3.1.1. Mutation

Mutation is a process in which DE generates a donor
vector �Vi�G corresponding to each population individual
(member) or target vector �Xi�G in the current generation,
after initialization of population. It is the method of creat-
ing this donor vector, which differentiates between various
DE schemes. The different strategies are distinguished by
the following notation: DE/x/y/z, where DE stands for
differential evolution, x represents a string denoting the
vector to be perturbed, y is the number of difference vec-
tors considered for perturbation of x, and z denotes the
recombination strategy which is used to create the trail
vector.

For each target vector �Xi�G = �x1� i�G� x2� i�G� x3� i�G� � � � �
xD� i�G	� a mutant vector Vi�G is generated according to:

“DE/rand/1:” �Vi�G = �Xri1�G
+F · � �Xri2�G

− �Xri3�G
� (2)

The indices r i1� r
i
2� r

i
3 are mutually exclusive integers ran-

domly chosen from the range [1, NP], and all different
from the base index i. These indices are randomly gener-
ated once for each donor vector. The scaling factor F also
called mutation factor between [0, 2] controls the amplifi-
cation of the differential variation ( �Xri2�G

− �Xri3�G
)

3.1.2. Crossover

To increase the potential diversity of the population,
a crossover operation comes into play after generating
the donor vector through mutation. The donor vector
exchanges its components with the target vector �Xi�G

under this operation to form the trail vector �Ui�G =
�u1� i�G� u2� i�G� u3� i�G� � � � � uD� i�G	. This discrete recombina-
tion is adopted by DE using the following scheme:

uj� i�G =
{
vj� i�G� if �randi� j �0�1�≤ Cr or j = jrand

xj� i�G� otherwise
(3)

j = 1�2� � � � �D

where randi� j �0�1� ∈ �0�1	 is a uniformly distributed ran-
dom number, which is called a new for each jth com-
ponent of the ith parameter vector. jrand ∈ �1�2� � � � �D	
is a randomly chosen index, which ensures that �Ui�G

gets at least one component form �Vi�G. Here CR is a
crossover constant which controls the recombination and
lies between [0, 1].

3.1.3. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection
to the next generation i.e., at G = G+ 1. The selection
operation is described as:

�Xi�G+1 = �Ui�G� if f � �Ui�G�≤ f � �Xi�G�

= �Xi�G� if f � �Ui�G�≤ f � �Xi�G�

where f � �X� is the function to be minimized. So if the new
trail vector yields an equal or lower value of the objec-
tive function, it replaces the corresponding target vector in
the next generation; otherwise the target is retained in the
population. Hence the population either gets better (with
respect to the minimization of the objective function) or
remains the same in fitness status, but never deteriorates.
The Pseudo code of DE algorithm is described as

follows:
Step 1. Set the generation number G = 0 and randomly
initialize a population of NP individuals PG = � �X1�G� � � � �

4 J. Comput. Theor. Nanosci. 9, 1–9, 2012
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�XNP�G� with �Xi�G = �x1� i�G� x2� i�G� x3� i�G� � � � � xD� i�G	 and
each individual is uniformly distributed in the range
� �Xmin� �Xmax	, where �Xmin = �x1�min� x2�min� � � � � xD�min� and
�Xmax = �x1�max� x2�max� � � � � xD�max� with i= �1�2� � � � �NP	.
Step 2. WHILE the stopping criterion is not satisfied
DO
FOR i= 1 to NP /* do for each individual sequentially*/
Step 2.1 Mutation Step
Generate a donor vector �Vi�G = �v1� i�G� � � � � vD� i�G� cor-

responding to the ith target vector �Xi�G using the mutation
step in (2).
Step 2.2 Crossover Step
Generate a trail vector �Ui�G = �u1� i�G� � � � � uD� i�G� for

the ith target vector �Xi�G through the crossover step given
in (3).
Step 2.3 Selection Step
Evaluate the trail vector �Ui�G.
IF f � �Ui�G�≤ f � �Xi�G�

THEN �Xi�G+1 = �Ui�G� f � �Xi�G+1�= f � �Ui�G�
END IF

ELSE �Xi�G+1 = �Xi�G� f � �Xi�G+1�= f � �Xi�G�
END FOR

Step 2.3 Generation Count is incremented using G =
G+1
END WHILE

3.2. Hybrid Differential Artificial Bee Colony
Algorithm

In some real world problems, DE may occasionally stop
proceeding towards the global optimum even though the
population has not converged to a local optimum or any
other point.17 In few situations occasionally, even when
new individuals may enter the population, but the algo-
rithm does not progress by finding better solutions. This
situation is usually referred to as stagnation. DE also suf-
fers from the problem of premature convergence, where
the population converges to some local optima of a mul-
timodal objective function, losing its diversity. Like other
evolutionary computing algorithms, the performance of
DE deteriorates with the growth of the dimensionality
of the search space as well. The advantage of nature
inspired heuristic global search algorithms is less likely
to be entrapped in local optima, but the convergence rate
will slow down and the computational complexity is high
at later stage. Hybridizing the Differential Evolution with
heuristic algorithms is expected to provide better conver-
gence and desired values.
Artificial Bee Colony Algorithm (ABCA) is a new Meta

heuristic global search algorithm. The goal of integrating
DE with ABCA is to combine their advantages, and to
decrease their disadvantages.32 In addition, the search pat-
tern of ABC combining with DE can enrich the search
strategies.

In general hybridization schemes are broadly catego-
rized into two types: the staged pipelining type hybrid
and the other is additional-operator type hybrid. In the
first type of hybridization, the optimization process is
applied to each and every individual in the population, fol-
lowed by further improvement using Differential Evolution
search. In the second type of hybridization, the Differ-
ential Evolution is applied as a standard genetic operator
for a given corresponding probability. In this hybridiza-
tion scheme we employed pipelining type hybrid method
because of its advantages. According to this method every
generation, after the stochastic optimization process (i.e.,
Artificial Bee Colony) is applied to all individuals in the
population, select n best Differential vectors from the
current population based on the fitness values to gen-
erate initial the population required for local search via
Differential Evolution. This search continues till it reach
maximum number of generations or it satisfies pre defined
criterion.
The steps of HDABCA are summarized as follows

(1) Initialization
(2) Move the employed bees onto their food sources and
evaluate their nectar amounts.
(3) Place the onlookers depending upon the nectar
amounts obtained by employed bees.
(4) Send the scouts for exploiting new food sources.
(5) Memorize the best food sources obtained so far.
(6) Select best (best fitness) n differential vectors from
the population based on the fitness calculated to generate
initial population for Differential evolution
(7) DO

FOR i= 1 to number of particles

DO
{

Mutation
Crossover
Selection

}
END FOR

(8) If a termination criterion is not satisfied, go to step 2;
otherwise stop the procedure and display the best solution
is obtained so far

4. EXPERIMENTATION AND RESULTS

In order to evaluate the performance of Hybrid Differ-
ential Artificial Bee Colony Algorithm, we have used a
test bed of 10 traditional numerical benchmarks as illus-
trated in Table I. Empirical results of the proposed Hybrid
method have been compared with results obtained with
that of basic Differential Evolution and Artificial Bee
Colony algorithm. Based on the complexity of the func-
tion, the number of iterations is changed i.e., for example

J. Comput. Theor. Nanosci. 9, 1–9, 2012 5
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Table I. Description of the benchmark functions used.

Dimension Range of search Theoretical optimum
Function Mathematical representation (D� (S) fmin

Sphere function �f1� f1��x�=
D∑
i=1

x2
i 30 �−100�100�D f1��0�= 0

Rosenbrock �f2� f2��x�=
D−1∑
i=1

[
100�xi+1−x2

i �
2 + �xi −1�2

]
30 �−30�30�D f2��1�= 0

Rastrigin �f3� f3��x�=
D∑
i=1

[
x2
i −10 cos�2
xi�+10

]
30 �−5�12�5�12�D f3��0�= 0

Grienwank �f4� f4��x�= 1
4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
+1 30 �−600�600�D f4��0�= 0

Ackley �f5� f1��x�=−20 exp

(
−0�2

√
1

D
D∑
i=1

x2
i

)
− 30 �−30�30�D f5��0�= 0

− exp
(

1

D
D∑
i=1

cos�2
xi�

)
+20+ e

Step �f6� f6��x�=
D∑
i=1

��xi +0�5	�2 30 �−100�100�D f6� �p�= 0

− 1
2
≤ pi <

1
2

Schwefel’s problem �f7� f7��x�=
D∑
i=1


xi
+
D∏
i=1


xi
 30 �−500� 500�D f7��0�= 0

Schaffer’s F6 function
�f8�

f8��x�= 0�5+ sin2
(√

x21+x22

)
−0�5

�1+0�001�x21+x22��
2 2 �−100�100�D f8��0�= 0

Six-Hump Camel-Back function
�f9�

f9��x�= �4x2
1 −2�1x4

1 + 1
3
x6
1+

x1x2 −4x2
2 +4x6

2�
2 �−5�5�D

f9�0�08983�−0�7126�
= f9�−0�08983�0�7126�
=−1�0316285

Goldstein-Price function (f10�
f10��x�= �1+ �x0 +x1+1�2 �19−14x0 +3x2

0

−14x1−6x0x1+3x2
1���30+ �2x0 −3x1�

2

×�18−32x0 +12x2
0 +48x1−36x0x1+27x2

1��

2 �−2�2�D f10�0�−1�= 3

if the maximum iterations are equal to 1000 it indicates
that the maximum iterations are equivalent to 100,000 fit-
ness evaluations. The values of the control parameters of
HDABC algorithm used in the simulation studies and the
values assigned for the control parameters of ABC and DE
are given in Table II. D denotes the dimensionality of the
test problem, S denotes the ranges of the variable, and fmin

is the function value of the global optimum.

4.1. Benchmarks

Functions f1 − f7 are high-dimensional problems. Func-
tions f1� f2� f7 are uni-modal. Function f6 is the step
function, which has only one minimum and that too
it is discontinuous. Functions f3� f4� f5 are multimodal

Table II. Algorithmic parameters.

Parameters DE ABC

Population size:- particles/bees 20 20
F 0.5 Not required
CR 0.8 Not required
Colony size — 20
ne — 50% of colony
no — 50% of colony
ne — 1
FS Not required 10
Limit Not required ne

∗D

popsize, population size; CR, crossover factor in DE; f, scaling factor; ne , employed
bee number; no , onlooker number; ne , scout number; FS, no of food sources (posi-
tion); D, dimension of the problem.

functions, where the local minima number increases
exponentially with respect to problem dimension. Func-
tions f8 − f10 are low-dimensional functions which have
only a few local minima.

4.2. Algorithms Used for the Comparative Study and
Their Parametric Setup

(1) Artificial Bee Colony Algorithm:- Various control
parameters of artificial bee colony algorithm used in the
simulation studies are given in Table II. The percentage of
onlooker bees was 50% of the colony size; the employed
bees were 50% of the colony and the number scout bees
were selected to be one for each and every cycle. In the
ABC algorithm the number of onlooker bees us taken
equal to that of employed bees to decrease the control
parameters and to be handy.
(2) Differential Evolution:- The control parameters, which
govern the search pattern of Differential Evolution, are
presented in Table II. Here popsize represents the popula-
tion or particles, F denotes the scaling factor followed by
CR that represents the crossover factor that controls the
recombination of vectors.
(3) Hybrid Differential Artificial Bee Colony Algorithm:-
The proposed hybrid method also employs the same para-
metric set up that had been employed by the Artificial
Bee Colony Algorithm and Differential Evolution. The
only change is that some of the numerical values are
been effected than that of basic parameters. In this hybrid
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scheme, once the ABC completes stochastic optimization.
Best 10 food source are picked out based on the fitness
and these serves as the initial population for Differen-
tial Evolution algorithm. Then the population is finely
tuned by DE based on the operators: Mutation, crossover
and selection. As the optimal value cannot be obtained in
one iteration we set it as 20 generations i.e., after every
ABC iteration DE was allowed to run based on the user
defined generations. Hybridizing these two optimization
techniques are expected to bring best values with in less
generations and also to have greater convergence speed.

4.3. Simulation Strategy

The comparative study used in this paper on differ-
ent benchmarks, focuses on the following performance
indices: 1) the quality of final solution; 2) the conver-
gence speed [measured in terms of number of generations].
Thirty independent runs of each of the algorithms were
carried out and the mean (average) and the standard devi-
ation of the best-of-run values were recorded.
The proposed algorithm along with other algorithms

i.e., DE and ABC, total three algorithms were executed
for a given function of a given dimension for about 30
independent runs, and the average best-of-run value and
the standard deviation were obtained. Different maximum
numbers of generations were used according to the com-
plexity involved in the problem.

4.4. Empirical Results

Table III compares the algorithms on the quality of the
best solutions obtained. The mean and the standard devi-
ation (within parentheses) of the best-of-run solution for
50 independent runs of each of the 10 algorithms are pre-
sented in Table III. A special note that in this table, if
all the runs of particular algorithm converge to or below
the pre-specified objective function value (0.001 for f1
to f7; 0, −1�0316, and 3.00 for f8, f9 and f10, respec-
tively) within the maximum number of generations, then
we report this threshold value as the average or mean of
30 runs. Table III illustrates, for all test functions and all
algorithms, the number of runs i.e., out of 50 that man-
aged to find the optimum solution (within the given toler-
ance) and also the average number of generations taken to
reach the optima value along with the standard deviation
(in parentheses). The convergence characteristics of eight
most difficult benchmarks have been provided in Figure 1.
Each Figure depicts how the objective function value of
the best individual in a population changes with increasing
number of generations (or iterations).

4.5. Discussion and Analysis on the Results

From Table III, it is observed that the performance of
hybrid algorithm remained consistently superior to that of

Table III. Average and the standard deviation (in parenthesis) of the
best-of-run solution for 50 independent runs tested on 10 benchmark
functions.

Mean best value (Standard deviation)

Function #Gen DE ABC Hybrid ABC-DE

f1 2000 208.696 6.66217E-016 3.17421E-017
(411.022) (1.1712E-016) (1.25367E-032)

f2 2000 1.24701 2.21131 0.109065
(2.272191) (3.89826) (5.64601E-017)

f3 3000 50.326 7.82E-007 0
(14.353) (2.54E-006) (0)

f4 2000 26.517 0.0079474 0
(21.9722) (0.0129966) (0)

f5 2000 7.3131 1.45708E-12 4.44089E-15
(2.08131) (7.25094E-13) (0)

f6 2000 135.133 0 0
(298.731) (0) (0)

f7 2000 146.997 1.11565E-008 5.52032E-017
(198.103) (2.49478E-008) (2.50733E-032)

f8 200 0.0001042 0.0024785 0
(0.0005708) (0.0038469) (0)

f9 200 −1.03154 −1.03163 −1.03163
(0.0004728) (3.6153E-007) (6.77522E-016)

f10 200 3.9 3.40524 3
(4.9295) (0.743419) (1.80672E-15)

the original DE and ABC over all benchmark problems.
The sphere function �f1� is perhaps the easiest among all
test functions (benchmarks). From Table III, we clearly
understand that for the 30-dimensional sphere 30 runs of
ABC, hybrid ABC-DE converged to or below the pre-
specified objective function value of 0.001. Similar is the
case for the step function �f6� in 30 dimensions. However
hybrid algorithm was found to yield better average accu-
racy than the remaining two methods over the functions
f3� f4 and f5. For functions f9 and f10, since the optimum is
not located at the origin, as expected, hybrid ABC-DE out-
performed than the ABC and DE. In the case of function
f2 even though the pre specified criterion is not obtained
through any of the algorithm, hybrid method has got good
convergence and best values than the other methods. In
almost all test functions concerned ABC out performed
DE (nine out of ten) except in the case of function f7,
where DE got better solution and it is unable to achieve
the pre specified value which is obtained by making use
of proposed method.
Table III and Figures 1(a–f) are indicative of the fact

that the convergence behaviour of the hybrid method has
been considerably improved in comparison to that of their
remaining methods. From Table III, it is clear and evident
that in almost all the cases considered, hybrid method pro-
duce most accurate results but they do so consuming the
least amount of computational time (measured in terms of
the generations needed to converge).
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Fig. 1. Progress toward the optimum solution: (a)–(e) for dimension = 30 and (f) for dimension = 2.

5. CONCLUSIONS

In the article, the performance of hybrid differential artifi-
cial bee colony algorithm (ABC-DE) was investigated for
function optimization problems. The proposed method is

illustrated using various test functions and as evident from
the graphical and empirical results the suggested hybrid
method ABC-DE performed extremely well. All the design
criteria have been satisfied with in less computational time
for the test functions.
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Our further research would include the performance
and analysis fractional order controller in a sensor less
motor drives. The proposed approach is likely to be useful
for other real world applications (for e.g., dynamic load
dispatch, harmonic estimation, radar tracking) as swarm
intelligent techniques work very well in such domains.
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