
130: Rule-based Expert Systems

Ajith Abraham
Oklahoma State University, Stillwater, OK, USA

1 Problem Solving Using Heuristics 909

2 What are Rule-based Systems? 910

3 Inference Engine in Rule-based Systems 911

4 Expert System Development 911

5 Fuzzy Expert Systems 912

6 Modeling Fuzzy Expert Systems 914

7 Illustration of Fuzzy Expert System Design 914

8 Adaptation of Fuzzy Inference Systems 918

9 Summary 918

References 919

1 PROBLEM SOLVING USING
HEURISTICS

A general introduction to artificial intelligence methods
of measurement signal processing is given in Article 128,
Nature and Scope of AI Techniques, Volume 2.

Problem solving is the process of finding a solution when
the path leading to that solution is uncertain. Even though
we are familiar with several problem-solving techniques, in
the real world, sometimes many problems cannot be solved
by a technique we are familiar with.

Surprisingly, for some complicated problems, no straight-
forward solution technique is known at all. For these
problems, heuristic solution techniques may be the only
alternative. A heuristic can be simplified as a strategy that
is powerful and general, but not absolutely guaranteed to
provide best solutions.

Heuristic methods are very problem specific. Previous
experience and some general rules – often called rules of

thumb – could help find good heuristics easier. Humans use
heuristics a great deal in their problem solving. Of course,
if the heuristic does fail, it is necessary for the problem
solver to either pick another heuristic, or know that it is
appropriate to give up.

Choosing random solutions, adopting greedy approaches,
evolving the basic heuristics for finding better heuris-
tics are just some of the popular approaches used
in heuristic problem solving (Michalewicz and Fogel,
1999).

Heuristic problem solving involves finding a set of rules,
or a procedure, that finds satisfactory solutions to a specific
problem. A good example is finding one’s way through
a maze. To make the way toward the final goal, a step-
by-step movement is necessary. Very often false moves are
made but in most cases we solve the problem without much
difficulty. For the maze problem, a simple heuristic rule
could be ‘choose the direction that seems to make progress’.
Another good example is the job shop scheduling prob-
lem wherein the task is to schedule Jn independent jobs,
where n = {1, 2,N} on Rm heterogeneous resources
and m = {1, 2,,M}, with an objective of minimizing
the completion time of all the jobs and utilizing all the
resources effectively.

Each job Jn has processing requirement Pj cycles and
resource Rm has speed of Si cycles/unit time. Any job Jn

has to be processed in resource Rm, until completion. If Cj

is the completion time and the last job j finishes processing,
then we define Cmax = max{Cj , j = 1, . . . , N}, the make-
span and �Cj , as the flow-time.

The task is to find an optimal schedule that optimizes
the flow-time and make-span. Some simple heuristic rules
to achieve this are by scheduling the Shortest Job on the
Fastest Resource (SJFR), which would minimize �Cj or by

Handbook of Measuring System Design, edited by Peter H. Sydenham and Richard Thorn.
 2005 John Wiley & Sons, Ltd. ISBN: 0-470-02143-8.

910 Elements: B – Signal Conditioning

scheduling the Longest Job on the Fastest Resource (LJFR),
which would minimize Cmax.

Minimizing �Cj asks that the average job finishes
quickly, at the expense of the largest job taking a long
time, whereas minimizing Cmax, asks that no job takes too
long, at the expense of most jobs taking a long time.

In summary, minimization of Cmax will result in
maximization of �Cj , which makes the problem more
interesting.

By contrast, algorithms are straightforward procedures
that are guaranteed to work every time for they are fully
determinate and time invariant. For example, certain daily
routine tasks could be formulated in a strict algorithm
format (example, starting up an automobile). However, for
a ‘problem solver’ to be more adaptive, novel elements or
new circumstances must be introduced. Many real-world
problems cannot be reduced to algorithms, which leads us
to the quest to find more powerful techniques.

2 WHAT ARE RULE-BASED SYSTEMS?

Conventional problem-solving computer programs make
use of well-structured algorithms, data structures, and crisp
reasoning strategies to find solutions. For the difficult
problems with which expert systems are concerned, it may
be more useful to employ heuristics: strategies that often
lead to the correct solution, but that also sometimes fail.

Conventional rule-based expert systems, use human
expert knowledge to solve real-world problems that
normally would require human intelligence. Expert
knowledge is often represented in the form of rules or as
data within the computer.

Depending upon the problem requirement, these rules and
data can be recalled to solve problems. Rule-based expert
systems have played an important role in modern intelligent
systems and their applications in strategic goal setting,
planning, design, scheduling, fault monitoring, diagnosis
and so on.

With the technological advances made in the last decade,
today’s users can choose from dozens of commercial
software packages having friendly graphic user interfaces
(Ignizio, 1991). Conventional computer programs perform
tasks using a decision-making logic containing very little
knowledge other than the basic algorithm for solving that
specific problem. The basic knowledge is often embedded
as part of the programming code, so that as the knowledge
changes, the program has to be rebuilt. Knowledge-based
expert systems collect the small fragments of human know-
how into a knowledge base, which is used to reason through
a problem, using the knowledge that is appropriate. An
important advantage here is that within the domain of

the knowledge base, a different problem can be solved
using the same program without reprogramming efforts.
Moreover, expert systems could explain the reasoning
process and handle levels of confidence and uncertainty,
which conventional algorithms do not handle (Giarratano
and Riley, 1989). Some of the important advantages of
expert systems are as follows:

• ability to capture and preserve irreplaceable human
experience;

• ability to develop a system more consistent than human
experts;

• minimize human expertise needed at a number of
locations at the same time (especially in a hostile
environment that is dangerous to human health);

• solutions can be developed faster than human experts.

The basic components of an expert system are illustrated
in Figure 1. The knowledge base stores all relevant infor-
mation, data, rules, cases, and relationships used by the
expert system. A knowledge base can combine the knowl-
edge of multiple human experts. A rule is a conditional
statement that links given conditions to actions or out-
comes. A frame is another approach used to capture and
store knowledge in a knowledge base. It relates an object
or item to various facts or values. A frame-based repre-
sentation is ideally suited for object-oriented programming
techniques. Expert systems making use of frames to store
knowledge are also called frame-based expert systems.

The purpose of the inference engine is to seek infor-
mation and relationships from the knowledge base and to
provide answers, predictions, and suggestions in the way a
human expert would. The inference engine must find the
right facts, interpretations, and rules and assemble them
correctly. Two types of inference methods are commonly
used – Backward chaining is the process of starting with
conclusions and working backward to the supporting facts.
Forward chaining starts with the facts and works forward
to the conclusions.

Expert knowledge Users

Knowledge base
acquisition facility

Knowledge base User interface

Explanation
facility

Inference engine

Figure 1. Architecture of a simple expert system.

Rule-based Expert Systems 911

The explanation facility allows a user to understand how
the expert system arrived at certain results. The overall
purpose of the knowledge acquisition facility is to provide
a convenient and efficient means for capturing and storing
all components of the knowledge base.

Very often specialized user interface software is used for
designing, updating, and using expert systems. The purpose
of the user interface is to ease use of the expert system for
developers, users, and administrators.

3 INFERENCE ENGINE IN RULE-BASED
SYSTEMS

A rule-based system consists of if-then rules, a bunch of
facts, and an interpreter controlling the application of the
rules, given the facts.

These if-then rule statements are used to formulate
the conditional statements that comprise the complete
knowledge base. A single if-then rule assumes the form
‘if x is A then y is B’ and the if-part of the rule ‘x is A’ is
called the antecedent or premise, while the then-part of the
rule ‘y is B’ is called the consequent or conclusion. There
are two broad kinds of inference engines used in rule-based
systems: forward chaining and backward chaining systems.

In a forward chaining system, the initial facts are pro-
cessed first, and keep using the rules to draw new conclu-
sions given those facts. In a backward chaining system, the
hypothesis (or solution/goal) we are trying to reach is pro-
cessed first, and keep looking for rules that would allow
to conclude that hypothesis. As the processing progresses,
new subgoals are also set for validation. Forward chaining
systems are primarily data-driven, while backward chain-
ing systems are goal-driven. Consider an example with the
following set of if-then rules

Rule 1: If A and C then Y
Rule 2: If A and X then Z
Rule 3: If B then X
Rule 4: If Z then D

If the task is to prove that D is true, given A and B are true.
According to forward chaining, start with Rule 1 and go on
downward till a rule that fires is found. Rule 3 is the only
one that fires in the first iteration. After the first iteration,
it can be concluded that A, B, and X are true. The second
iteration uses this valuable information. After the second
iteration, Rule 2 fires adding Z is true, which in turn helps
Rule 4 to fire, proving that D is true. Forward chaining
strategy is especially appropriate in situations where data
are expensive to collect, but few in quantity. However,
special care is to be taken when these rules are constructed,

with the preconditions specifying as precisely as possible
when different rules should fire.

In the backward chaining method, processing starts with
the desired goal, and then attempts to find evidence for
proving the goal. Returning to the same example, the task
to prove that D is true would be initiated by first finding a
rule that proves D. Rule 4 does so, which also provides
a subgoal to prove that Z is true. Now Rule 2 comes
into play, and as it is already known that A is true, the
new subgoal is to show that X is true. Rule 3 provides
the next subgoal of proving that B is true. But that B is
true is one of the given assertions. Therefore, it could be
concluded that X is true, which implies that Z is true, which
in turn also implies that D is true. Backward chaining is
useful in situations where the quantity of data is potentially
very large and where some specific characteristic of the
system under consideration is of interest. If there is not
much knowledge what the conclusion might be, or there is
some specific hypothesis to test, forward chaining systems
may be inefficient. In principle, we can use the same set
of rules for both forward and backward chaining. In the
case of backward chaining, since the main concern is with
matching the conclusion of a rule against some goal that
is to be proved, the ‘then’ (consequent) part of the rule is
usually not expressed as an action to take but merely as a
state, which will be true if the antecedent part(s) are true
(Donald, 1986).

4 EXPERT SYSTEM DEVELOPMENT

Steps in the expert systems development process include
determining the actual requirements, knowledge acquisi-
tion, constructing expert system components, implement-
ing results, and formulating a procedure for maintenance
and review.

Knowledge acquisition is the most important element
in the development of expert system (Niwa, Sasaki and
Ihara, 1988). Knowledge could be obtained by interviewing
domain experts and/or learning by experience.

Very often people express knowledge as natural language
(spoken language), or using letters or symbolic terms.
There exist several methods to extract human knowledge.
Cognitive Work Analysis (CWA) and the Cognitive Task
Analysis (CTA) provide frameworks to extract knowledge.

The CWA is a technique to analyze, design, and evaluate
the human computer interactive systems (Vicente, 1999).

The CTA is a method to identify cognitive skill, mental
demands, and needs to perform task proficiency (Militallo
and Hutton, 1998). This focuses on describing the represen-
tation of the cognitive elements that defines goal generation
and decision-making. It is a reliable method for extracting

912 Elements: B – Signal Conditioning

human knowledge because it is based on the observations
or an interview.

Most expert systems are developed using specialized
software tools called shells . These shells come equipped
with an inference mechanism (backward chaining, forward
chaining, or both), and require knowledge to be entered
according to a specified format.

One of the most popular shells widely used throughout
the government, industry, and academia is the CLIPS
(CLIPS, 2004). CLIPS is an expert system tool that provides
a complete environment for the construction of rule- and/or
object-based expert systems. CLIPS provides a cohesive
tool for handling a wide variety of knowledge with support
for three different programming paradigms: rule-based,
object-oriented, and procedural. CLIPS is written in C
for portability and speed and has been installed on many
different operating systems without code changes.

5 FUZZY EXPERT SYSTEMS

The world of information is surrounded by uncertainty
and imprecision. The human reasoning process can handle
inexact, uncertain, and vague concepts in an appropriate
manner. Usually, the human thinking, reasoning, and per-
ception process cannot be expressed precisely. These types
of experiences can rarely be expressed or measured using
statistical or probability theory. Fuzzy logic provides a
framework to model uncertainty, the human way of think-
ing, reasoning, and the perception process. Fuzzy systems
were first introduced by Zadeh (1965).

A fuzzy expert system is simply an expert system that
uses a collection of fuzzy membership functions and rules,
instead of Boolean logic, to reason about data (Schneider
et al., 1996). The rules in a fuzzy expert system are usually
of a form similar to the following:
If A is low and B is high then X = medium

where A and B are input variables, X is an output variable.
Here low, high, and medium are fuzzy sets defined on A, B,
and X respectively. The antecedent (the rule’s premise)
describes to what degree the rule applies, while the rule’s
consequent assigns a membership function to each of one
or more output variables.

Let X be a space of objects and x be a generic element
of X. A classical set A,A ⊆ X, is defined as a collection
of elements or objects x ∈ X, such that x can either belong
or not belong to the set A. A fuzzy set A in X is defined
as a set of ordered pairs

A = {(x, µA(x))|x ∈ X} (1)

where µA(x) is called the membership function (MF) for
the fuzzy set A. The MF maps each element of X to a

membership grade (or membership value) between zero and
one. Obviously (1) is a simple extension of the definition
of a classical set in which the characteristic function is
permitted to have any values between zero and one.

The intersection of two fuzzy sets A and B is specified
in general by a function T : [0,1] × [0,1] → [0,1], which
aggregates two membership grades as follows:

µA∩B(x) = T (µA(x), µB(x)) = µA(x)∗̄µB(x) (2)

where ∗̄ is a binary operator for the function T . This class
of fuzzy intersection operators are usually referred to as
T-norm operators (Jang, Sun and Mizutani, 1997). Four of
the most frequently used T-norm operators are

Minimum: Tmin(a, b) = min(a, b) = a ∧ b (3)

Algebraic product: Tap(a, b) = ab (4)

Bounded product: Tbp(a, b) = 0 ∨ (a + b − 1) (5)

Drastic product: Tdp(a, b) =

a, if b = 1
b, if a = 1
0, if a, b < 1

(6)

Like intersection, the fuzzy union operator is specified in
general by a function S: [0,1] × [0,1] → [0,1], which
aggregates two membership grades as follows:

µA∪B(x) = S(µA(x), µB(x)) = µA(x) ∓ µB(x) (7)

where ∓ is the binary operator for the function S. This class
of fuzzy union operators are often referred to as T-conorm
(or S-norm) operators (Jang, Sun and Mizutani, 1997). Four
of the most frequently used T-conorm operators are

Maximum: Smax(a, b) = max(a, b) = a ∨ b (8)

Algebraic sum: Sas(a, b) = a + b − ab (9)

Bounded sum: Sbs(a, b) = 1 ∧ (a + b) (10)

Drastic sum: Sds(a, b) =

a, if b = 0
b, if a = 0
1, if a, b > 0

(11)

Both the intersection and union operators retain some
properties of the classical set operation. In particular, they
are associative and commutative.

Figure 2 illustrates the basic architecture of a fuzzy
expert system. The main components are a fuzzification
interface, a fuzzy rule base (knowledge base), an inference
engine (decision-making logic), and a defuzzification inter-
face. The input variables are fuzzified whereby the member-
ship functions defined on the input variables are applied to
their actual values, to determine the degree of truth for each
rule antecedent. Fuzzy if-then rules and fuzzy reasoning are
the backbone of fuzzy expert systems, which are the most

Rule-based Expert Systems 913

Fuzzification
interface

Defuzzification
interface

Inference
engine

Fuzzy rule
base

Rules

Fuzzy
input

Fuzzy
output

Crisp
input

Crisp
output

Figure 2. Basic architecture of a fuzzy expert system.

Input MF

Input (x,y)

Output Z

Output MF
min max

A1 B1

X Y

m

A2

X

X

m

m

B2

Y

Y

m

C1

Z1

m
c’1

C’

C2

Z2

Z(COA)m

m

c’2

Figure 3. Mamdani fuzzy inference system using min and max for T-norm and T-conorm operators.

important modeling tools based on fuzzy set theory. The
fuzzy rule base is characterized in the form of if-then rules
in which the antecedents and consequents involve linguis-
tic variables. The collection of these fuzzy rules forms the
rule base for the fuzzy logic system. Using suitable infer-
ence procedure, the truth value for the antecedent of each
rule is computed, and applied to the consequent part of each
rule. This results in one fuzzy subset to be assigned to each
output variable for each rule. Again, by using suitable com-
position procedure, all the fuzzy subsets assigned to each
output variable are combined together to form a single fuzzy
subset for each output variable. Finally, defuzzification is
applied to convert the fuzzy output set to a crisp output.

The basic fuzzy inference system can take either fuzzy
inputs or crisp inputs, but the outputs it produces are always
fuzzy sets. The defuzzification task extracts the crisp output
that best represents the fuzzy set. With crisp inputs and
outputs, a fuzzy inference system implements a nonlinear
mapping from its input space to output space through a
number of fuzzy if-then rules.

In what follows, the two most popular fuzzy inference
systems are introduced that have been widely deployed in
various applications. The differences between these two
fuzzy inference systems lie in the consequents of their
fuzzy rules, and thus their aggregation and defuzzification
procedures differ accordingly.

According to Mamdani, fuzzy inference system (Mam-
dani and Assilian, 1975) – see Figure 3 – the rule ante-
cedents and consequents are defined by fuzzy sets and has
the following structure:

if x is A1 and y is B1 then z1 = C
′
1 (12)

There are several defuzzification techniques. The most
widely used defuzzification technique uses the centroid of
area method as follows

Centroid of area ZCOA =
∫
Z

µA(z) z dz∫
Z

µA(z) dz
(13)

where µA(z) is the aggregated output MF.
Takagi and Sugeno (1985) proposed an inference scheme

in which the conclusion of a fuzzy rule is constituted by a
weighted linear combination of the crisp inputs rather than a
fuzzy set. A basic Takagi–Sugeno fuzzy inference system
is illustrated in Figure 4 and the rule has the following
structure

if x is A1 and y is B1, then z1 = p1x + q1y + r1 (14)

where p1, q1, and r1 are linear parameters. TSK Tak-
agi–Sugeno Kang fuzzy controller usually needs a smaller

914 Elements: B – Signal Conditioning

Input (x,y)

A1 B1

X Y

m

A2

X
X

m

m

B2

Y
Y

m

w1

w2

z1 =
p1*x + q1*y + r1

z2 =

Z

p2*x + q2*y + r2

w1*z1 + w2*z2

w1 + w2
=

Output Z

Figure 4. Takagi–Sugeno fuzzy inference system using a min or product as T-norm operator.

number of rules, because their output is already a linear
function of the inputs rather than a constant fuzzy set.

6 MODELING FUZZY EXPERT SYSTEMS

Fuzzy expert system modeling can be pursued using the
following steps.

• Select relevant input and output variables. Determine
the number of linguistic terms associated with each
input/output variable. Also, choose the appropriate fam-
ily of membership functions, fuzzy operators, reasoning
mechanism, and so on.

• Choose a specific type of fuzzy inference system
(for example, Mamdani, Takagi–Sugeno etc.). In most
cases, the inference of the fuzzy rules is carried
out using the ‘min’ and ‘max’ operators for fuzzy
intersection and union.

• Design a collection of fuzzy if-then rules (knowledge
base). To formulate the initial rule base, the input space
is divided into multidimensional partitions and then
actions are assigned to each of the partitions.

In most applications, the partitioning is achieved using one-
dimensional membership functions using fuzzy if-then rules
as illustrated in Figure 5. The consequent parts of the rule
represent the actions associated with each partition. It is
evident that the MFs and the number of rules are tightly
related to the partitioning.

7 ILLUSTRATION OF FUZZY EXPERT
SYSTEM DESIGN

This section illustrates the development of a reactive power
prediction model using Mamdani and Takagi–Sugeno fuzzy
inference expert systems. The MatLab fuzzy logic tool-
box was used to simulate the various experiments (Fuzzy
Logic Tool Box, 2004).

R7 R8 R9

R4

R3

R5

R2

R6

R1

La
rg

e
M

ed
iu

m

In
pu

t-
2

Input-1

S
m

al
l

LargeMediumSmall

Figure 5. Example showing how the two-dimensional spaces are
partitioned using three trapezoidal membership functions per input
dimension. A simple if-then rule will appear as If input-1 is
medium and input 2 is large, then rule R8 is fired .

The task is to develop a fuzzy expert system to forecast
the reactive power (P) at time t + 1 by knowing the load
current (I) and voltage (V) at time t . The experiment
system consists of two stages: developing the fuzzy expert
system, and performance evaluation using the test data. The
model has two in–out variables (V and I) and one output
variable (P). Training and testing data sets were extracted
randomly from the master dataset. Sixty percent of data
was used for training and the remaining 40% for testing
(Abraham and Khan, 2003).

7.1 Design and experiments: fuzzy expert systems

First, the effects of (a) shape and quantity of mem-
bership functions (b) T-norm and T-conorm operators
(c) defuzzification methods and (d) inference method for

Rule-based Expert Systems 915

designing the fuzzy expert system is analyzed. Experiments
were carried out using four different settings using the same
rule base.

Experiment 1 (To evaluate the effect on the number of
membership functions) The following settings were used
for designing the expert system

1. Two triangular membership functions (MFs) for each
input variable and four triangular MFs for the output
variable (power). Using the grid partitioning method
(Figure 5), four if-then rules were developed.

2. Three triangular MFs for each input variable and nine
triangular MFs for the output variable (power). The
rule base consisted of nine if-then rules.

‘min’ and ‘max’ were used as T-norm and T-conorm oper-
ators and the centroid method of defuzzification for Mam-
dani inference method and weighted average defuzzification
method for Takagi–Sugeno Fuzzy Inference System (FIS).
The developed fuzzy inference systems using Mamdani
and Takagi–Sugeno models are depicted in Figures 6 to
9. Table 1 summarizes the training and testing Root Mean
Squared Error (RMSE) values.

Experiment 2 (To evaluate the effect of shape of membership
functions) For the Mamdani FIS, three Gaussian MFs for

Table 1. Empirical comparison of fuzzy inference systems and
quantity of Membership Functions (MFs).

No. of Mamdani FIS Takagi – Sugeno FIS

MFs
Root mean squared error

Training Test Training Test

2 0.401 0.397 0.024 0.023
3 0.348 0.334 0.017 0.016

each input variable and nine Gaussian MFs for the output
variable were used. The rule base consisted of nine if-
then rules. ‘min’ and ‘max’ as T-norm and T-conorm
operators, and the centroid method of defuzzification for
Mamdani FIS and the weighted average defuzzification
method for Takagi–Sugeno FIS were also used. The
developed fuzzy inference systems using Mamdani and
Takagi–Sugeno models are depicted in Figures 10 and 11.
Table 2 summarizes the training and testing RMSE values.

Experiment 3 (To evaluate the effect of fuzzy operators) For
Mamdani FIS, three Gaussian MFs for each input variable
and nine Gaussian MFs for the output variable were used.
The rule base consisted of nine if-then rules. T-norm and T-
conorm operators were ‘product’ and ‘sum’ and the centroid
method of defuzzification for Mamdani FIS, and weighted
average defuzzification method for Takagi–Sugeno FIS
were used. Table 3 summarizes the training and testing
RMSE values.

Experiment 4 (To evaluate the effect of defuzzification
operators) For the Mamdani FIS, three Gaussian MFs for
each input variable and nine Gaussian MFs for the output
variable were used. The rule base consisted of nine if-
then rules. T-norm and T-conorm operators were ‘product’
and ‘sum’ and the following defuzzification operators were
tested for Mamdani FIS.

Table 2. Empirical comparison of fuzzy inference systems using
Gaussian MFs.

Mamdani FIS Takagi – Sugeno FIS

Root mean squared error

Training Test Training Test

0.243 0.240 0.021 0.019

Voltage = 0.5 Current = 0.5
Power = 0.5

1

1

2

3

4

0 10

10

Figure 6. Mamdani fuzzy inference system using two triangular MFs for input variables.

916 Elements: B – Signal Conditioning

Voltage = 0.5 Current = 0.5
Power = 0.424

1

1

2

3

4

0 10

−0.16 1.038

Figure 7. Takagi–Sugeno fuzzy inference system using two triangular MFs for input variables.

Voltage = 0.5 Current = 0.5 Power = 0.625

1

1

2

3

4

5

6

7

8

9

0 10

10

Figure 8. Mamdani fuzzy inference system using three triangular MFs for input variables.

Voltage = 0.5 Current = 0.527 Power = 0.429

1

1

2

3

4

5

6

7

8

9

0 10

−0.1291 1.058

Figure 9. Takagi–Sugeno fuzzy inference system using three triangular MFs for input variables.

Rule-based Expert Systems 917

Voltage = 0.5 Current = 0.5 Power = 0.584

1

1

2

3

4

5

6

7

8

9

0 10

10

Figure 10. Mamdani fuzzy inference system using three Gaussian MFs for input variables.

Voltage = 0.5

1

1

2

3

4

5

6

7

8

9

0

Current = 0.5

10

Power = 0.417

−0.1364 1.095
−−

Figure 11. Takagi–Sugeno fuzzy inference system using three Gaussian MFs for input variables.

Table 3. Empirical comparison of fuzzy inference systems for
different fuzzy operators.

Mamdani FIS Takagi – Sugeno FIS

Root mean squared error

Training Test Training Test

0.221 0.219 0.019 0.018

• Centroid
• Bisector of Area (BOA)
• Mean of Maximum (MOM)
• Smallest of Maximum (SOM).

For the Takagi–Sugeno FIS, the weighted sum and
weighted average defuzzification methods were used.

Table 4 summarizes the training and testing of RMSE
values.

Discussions of Results and Problem Solution As depicted
in Table 1, when the number of input MFs were increased
from two to three, the RMSE values reduced regardless
of the inference system used. However, when the shape
of the MF was changed to Gaussian, RMSE values for
Mamdani FIS decreased but the RMSE values for Tak-
agi–Sugeno FIS increased (Table 2). Using Gaussian MFs,
when the T-norm and T-conorm operators were changed
to ‘product’ and ‘sum’ (instead of ‘min’ and ‘max’) both
the inference methods performed better (Table 3). Finally,
the selection of an ideal defuzzification operator also has
a direct influence in the performance of FIS as shown in
Table 4.

918 Elements: B – Signal Conditioning

Table 4. Empirical comparison of fuzzy inference systems for different defuzzification operators.

Mamdani FIS Takagi–Sugeno FIS

Defuzzification RMSE Defuzzification RMSE

Training Test Training Test

Centroid 0.221 0.0219 Weighted sum 0.019 0.018
MOM 0.230 0.232 Weighted average 0.085 0.084
BOA 0.218 0.216
SOM 0.229 0.232

The design of the rule base (number of rules and how
the inputs and outputs are related) is also very important
for the good performance of FIS. The role of weighting
factors emphasizing the importance of certain rules also
bears a prominent role for the overall performance. When
the input/output dimensions become larger, manual design
becomes tedious and sometimes could even lead to poor
design and implementation.

8 ADAPTATION OF FUZZY INFERENCE
SYSTEMS

Expert knowledge is often the main source to design
the fuzzy expert systems. Figure 12 illustrates the various
parameters and components that need to be adapted for con-
trolling a process. According to the performance measure
of the problem environment, the membership functions,
rule bases, and the inference mechanism are to be adapted
(Abraham, 2002).

Neural network learning, self-organizing maps and clus-
tering methods could be used to generate rules. Gradi-
ent descent and its variants could be applied to fine-
tune the parameters of parameterized input/output mem-
bership functions and fuzzy operators (Abraham, 2001).
Adaptation of fuzzy inference systems using evolutionary

Adaptation of fuzzy
inference system

Membership functions

if-then rules

Fuzzy operators

Knowledge base

Fuzzy inference system

Performance
measure

Process
+

−

Figure 12. Adaptation of fuzzy inference systems.

computation techniques has been widely explored. Evolu-
tionary Computation (EC) is a population based adaptive
method, which may be used to solve optimization problems,
based on the genetic processes of biological organisms
(Michalewicz and Fogel, 1999).

Over many generations, natural populations evolve
according to the principles of natural selection and ‘sur-
vival of the fittest’, first clearly stated by Charles Darwin
in ‘On the Origin of Species’. By mimicking this pro-
cess, EC could ‘evolve’ solutions to real-world problems, if
they have been suitably encoded (problem representation is
called chromosome). Automatic adaptation of membership
functions is popularly known as self tuning and the chromo-
some encodes parameters of trapezoidal, triangle, logistic,
hyperbolic-tangent, Gaussian membership functions, and
so on. Evolutionary search of fuzzy rules can be carried
out using three approaches. In the first method (Michi-
gan approach), the fuzzy knowledge base is adapted as a
result of antagonistic roles of competition and cooperation
of fuzzy rules.

The second method (Pittsburgh approach), evolves a
population of knowledge bases rather than individual fuzzy
rules. Reproduction operators serve to provide a new
combination of rules and new rules.

The third method (iterative rule learning approach),
is very much similar to the first method with each
chromosome representing a single rule, but contrary to the
Michigan approach, only the best individual is considered to
form part of the solution, discarding the remaining chromo-
somes of the population. The evolutionary learning process
builds up the complete rule base through an iterative learn-
ing process (Cordón et al., 2001).

9 SUMMARY

Rule-based expert systems have been applied in a vast
number of application areas. An important advantage of
the fuzzy expert system is that the knowledge is expressed
as easy-to-understand linguistic rules. If we have data, the
fuzzy expert system can be taught using neural network

Rule-based Expert Systems 919

learning, EC, or other adaptation techniques. It is to
be expected that the number of applications will grow
considerably in the future now that success is clearly proven
for these methods.

REFERENCES

Abraham, A. (2001) Neuro-Fuzzy Systems: State-of-the-Art Mod-
eling Techniques, Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, in Lecture Notes in Com-
puter Science, Vol. 2084, (eds. Mira., Jose and Prieto., Alberto)
Springer Verlag, Germany (pp. 269–276).

Abraham, A. (2002) Intelligent Systems: Architectures and Per-
spectives, Recent Advances in Intelligent Paradigms and Appli-
cations, in Studies in Fuzziness and Soft Computing, Chapter 1,
(eds A., Abraham, L., Jain and J., Kacprzyk), Springer Verlag,
Germany (pp. 1–35).

Abraham, A. and Khan, M.R. (2003) Neuro-Fuzzy Paradigms
for Intelligent Energy Management, Innovations in Intelligent
Systems: Design, Management and Applications, in Studies in
Fuzziness and Soft Computing, Chapter 12, (eds A., Abraham,
L., Jain and B., Jan van der Zwaag), Springer Verlag, Germany
(pp. 285–314).

CLIPS (2004) Expert System Shell <http://www.ghg.net/clips/
CLIPS.html>.

Cordón, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001)
Genetic Fuzzy Systems: Evolutionary Tuning and Learning of
Fuzzy Knowledge Bases, World Scientific Publishing Company,
Singapore.

Donald, W.A. (1986) A Guide to Expert Systems, Addison-
Wesley, Boston, MA.

Fuzzy Logic Toolbox, The MathWorks (2004) http://www.
mathworks.com/products/fuzzylogic/.

Giarratano, J. and Riley, G. (1989) Expert Systems: Principles and
Programming, PWS-Kent Publishing Co, Boston, MA.

Ignizio, J.P. (1991) Introduction to Expert Systems: The Devel-
opment and Implementation of Rule-Based Expert Systems,
McGraw-Hill, Inc, USA.

Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997) Neuro-Fuzzy and
Soft Computing: A Computational Approach to Learning and
Machine Intelligence, Prentice Hall Inc, USA.

Mamdani, E.H. and Assilian, S. (1975) An Experiment in Lin-
guistic Synthesis with a Fuzzy Logic Controller. International
Journal of Man-Machine Studies, 7(1), 1–13.

Michalewicz, Z. and Fogel, D.B. (1999) How to Solve It: Modern
Heuristics, Springer Verlag, Germany.

Militallo, L.G., Hutton, R.J.B. (1998) Applied Cognitive Task
Analysis (ACTA): A Practitioner’s Toolkit for Understanding
Cognitive. Ergonomics, 41(11), 1618–1642.

Niwa, K., Sasaki, K. and Ihara, H. (1988) An Experimental Com-
parison of Knowledge Representation Schemes, in Principles of
Expert Systems, (Eds A., Gupta and E.B., Prasad), IEEE Press,
New York (pp. 133–140).

Schneider, M., Langholz, G., Kandel, A. and Chew, G. (1996)
Fuzzy Expert System Tools, John Wiley & Sons, USA.

Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems
and its applications of modeling and control, IEEE Transactions
of Systems. Man and Cybernetics , USA (pp. 116–132).

Vicente, K.J. (1999) Cognitive Work Analysis:∼ Towards Safe,
Productive, and Healthy Computer-Based Work, Lawrence Erl-
baum Associates, Inc. Press, USA.

Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8,
338–353.

