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Summary. This chapter presents a broad overview of Computational Intelligence (CI)
techniques including Artificial Neural Networks (ANN), Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), Fuzzy Sets (FS), and Rough Sets (RS). We review a
number of applications of computational intelligence to problems in bioinformatics and
computational biology, including gene expression, gene selection, cancer classification,
protein function prediction, multiple sequence alignment, and DNA fragment assembly.
We discuss some representative methods to provide inspiring examples to illustrate how
CI could be applied to solve bioinformatic problems and how bioinformatics could be
analyzed, processed, and characterized by computational intelligence. Challenges to be
addressed and future directions of research are presented. An extensive bibliography is
also included.

1.1 Introduction

The past few decades have seen a massive growth in biological information gath-
ered by the related scientific communities. A deluge of such information coming
in the form of genomes, protein sequences, gene expression data and so on have
led to the absolute need for effective and efficient computational tools to store,
analyze and interpret the multifaceted data. Bioinformatics and computational
biology involve the use of techniques including applied mathematics, informatics,
statistics, computer science, artificial intelligence, chemistry, and biochemistry
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to solve biological problems usually on the molecular level. Research in com-
putational biology often overlaps with systems biology. Major research efforts
in the field include sequence alignment, gene finding, genome assembly, protein
structure alignment, protein structure prediction, prediction of gene expression
and protein-protein interactions, and the modeling of evolution [128]. Hence, in
other words, bioinformatics can be described as the application of computational
methods to make biological discoveries [10]. The ultimate attempt of the field
is to develop new insights into the science of life as well as creating a global
perspective, from which the unifying principles of biology can be derived [5].
There are at least 26 billion base pairs (bp) representing the various genomes
available on the server of the National Center for Biotechnology Information
(NCBI) [27]. Besides the human genome with about 3 billion bp, many other
species have their complete genome available there. Cohen [23] explained the
needs of biologists to utilize and help interpret the vast amounts of data that
are constantly being gathered in genomic research. He also pointed out the basic
concepts in molecular cell biology, and outlined the nature of the existing data,
and illustrated the algorithms needed to understand cell behavior.

Bioinformatics involve the creation and advancement of algorithms using tech-
niques including computational intelligence, applied mathematics and statistics,
informatics, and biochemistry to solve biological problems usually on the molec-
ular level. Major research efforts in the field include sequence analysis, gene
finding, genome annotation, protein structure alignment analysis and predic-
tion, prediction of gene expression, protein-protein docking/interactions, and
the modeling of evolution.

Bioinformatics and computational biology are concerned with the use of com-
putation to understand biological phenomena and to acquire and exploit bio-
logical data, increasingly large-scale data [38]. Methods from bioinformatics and
computational biology are increasingly used to augment or leverage traditional
laboratory and observation-based biology. These methods have become critical
in biology due to recent changes in our ability and determination to acquire
massive biological data sets, and due to the ubiquitous, successful biological in-
sights that have come from the exploitation of those data. This transformation
from a data-poor to a data-rich field began with DNA sequence data, but is now
occurring in many other areas of biology [27].

Computational intelligence is a well-established paradigm, where new the-
ories with a sound biological understanding have been evolving. The current
experimental systems have many of the characteristics of biological computers
(“brains”) and are beginning to be built to perform a variety of tasks that are
difficult or impossible to do with conventional computers. Computational intel-
ligence methods are now being applied to problems in molecular biology and
bioinformatics [70]. To name a few, Tasoulis et al. [104] present an applica-
tion of neural networks, evolutionary algorithms, and clustering algorithms to
DNA microarray experimental data analysis; Liang and Kelemen [60] propose a
time lagged recurrent neural network with trajectory learning for identifying and
classifying gene functional patterns from the heterogeneous nonlinear time series
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fmicroarray experiments. Reader may refer to [51, 22] for an extensive review of
various computational intelligence techniques applied to different bioinformatics
problems. Defining computational intelligence is not an easy task. In a nutshell,
which becomes quite apparent in light of the current research pursuits, the area
is heterogeneous with a combination of such technologies as neural networks,
fuzzy systems, evolutionary computation, swarm intelligence, and probabilistic
reasoning. The recent trend is to integrate different components to take advan-
tage of complementary features and to develop a synergistic system [51]. Hybrid
architectures like neuro-fuzzy systems, evolutionary-fuzzy systems, evolutionary-
neural networks, evolutionary neuro-fuzzy systems, rough-neural, rough-fuzzy,
etc. are widely applied for real world problem solving [1, 2, 46].

The objective of this book chapter is to present to the computational intelli-
gence and bioinformatics research communities the state of the art computational
intelligence applications to bioinformatics processing and motivate research in
new trend-setting directions. Hence, we review and discuss in the following sec-
tions some representative methods to provide inspiring examples to illustrate
how CI techniques could be applied to solve bioinformatics problems and how
bioinformatics could be analyzed, processed, and characterized by computational
intelligence. These representative examples include (i) CI in gene expression and
clustering, (ii) rough discretization of gene expression, (iii) CI in protein se-
quence classification, (iv) CI in gene selection, (v) CI in cancer classification
and the DNA fragment assembly problem, and (vi) CI in the multiple sequence
alignment problem.

To provide useful insights for CI applications in bioinformatics, we structure
the rest of this chapter as follows. Section 1.2 introduces some fundamental
aspects and key components of modern computational intelligence including Ar-
tificial Neural Networks (ANN) , Rough Sets (RS), Fuzzy Sets (FS), Particle
Swarm Optimization (PSO), and Genetic Algorithms (GA). Section 1.3 reviews
some published papers on using computational intelligence in Gene Expression.
A review of the current literature on CI-based approaches in Protein Sequence
Classification problems is provided in Section 1.4. Section 1.5 discusses some suc-
cessful work to illustrate how CI could be applied to Gene Selection problems.
Applications of computational intelligence in DNA Fragment Assembly, Multi-
ple Sequence Alignment Problems (MSA), and Protein Structure Prediction are
reviewed in Sections 1.6, 1.7 and 1.8, respectively. An example of applications
of CI in the field of human genetics, in the form of genetic programming neural
networks, is presented in Section 1.9. CI in Microarray Classification is discussed
and reviewed in Section 1.10. Conclusions, Challenges, and Future Directions are
addressed in Section 1.11.

1.2 Computational Intelligence: Overview

In the following subsections, we present an overview of selected modern compu-
tational intelligence techniques including artificial neural networks, fuzzy sets,
particle swarm optimization, genetic algorithms, and rough sets.
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1.2.1 Artificial Neural Networks (ANN)

Artificial neural networks have been developed as generalizations of mathematical
models of biological nervous systems. In a simplified mathematical model of the
neuron, synapses are representedby connection weights that modulate the effect of
the associated input signals, and the nonlinear characteristic exhibited by neurons
is represented by a transfer function. There are many transfer functions developed
to process the weighted and biased inputs, among which four basic and widely
adopted in the field transfer functions are illustrated in Figure 1.1.

Fig. 1.1. Basic transfer functions

The neuron impulse is computed as the weighted sum of the input signals,
transformed by the transfer function. The learning capability of an artificial neu-
ron is achieved by adjusting the weights in accordance to the chosen learning
algorithm. Most applications of neural networks fall into the following categories:
(1) Prediction: Use the input values to predict some output; (2) Classification:
Use the input values to determine the classification of the input; (3) Data Asso-
ciation: Similar to classification, but also recognizes data containing errors; and
(4) Data conceptualization: Analyze the inputs so that grouping relationships
can be inferred.

Neural Network Architecture

The behavior of the neural network depends largely on the interaction between
the different neurons. The basic architecture consists of three types of neuron
layers: input, hidden, and output layers.

In feed-forward networks the signal flow is from input to output units strictly
in a feed-forward direction. The data processing can extend over multiple (layers
of) units, but no feedback connections are present, that is, connections extend-
ing from outputs of units to inputs of units in the same layer or previous layers.
Recurrent networks contain feedback connections. Contrary to feed-forward net-
works, the dynamical properties of such networks are important. In some cases,
the activation values of the units undergo a relaxation process such that the
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network will evolve to a stable state in which these activations do not change
anymore.

In other applications, the changes of the activation values of the output neu-
rons are significant, such that the dynamical behavior constitutes the output of
the network. There are several other neural network architectures (Elman net-
work, adaptive resonance theory maps, competitive networks etc.) depending on
the properties and requirement of the application.

Reader may refer to [13] for an extensive overview of the different neural
network architectures and learning algorithms. A neural network has to be con-
figured such that the application of a set of inputs produces the desired set
of outputs. Various methods to set the strengths of the connections exist. One
way is to set the weights explicitly, using a priori knowledge. Another way is to
train the neural network by feeding it teaching patterns and letting it change its
weights according to some learning rule. The learning situations in neural net-
works may be classified into three distinct sorts. These are supervised learning,
unsupervised learning, and reinforcement learning. In supervised learning, an in-
put vector is presented at the inputs together with a set of desired responses, one
for each node, at the output layer. A forward pass is done and the errors or dis-
crepancies, between the desired and actual response for each node in the output
layer, are found. These are then used to determine weight changes in the net-
work according to the prevailing learning rule. The term ‘supervised’ originates
from the fact that the desired signals on individual output nodes are provided
by an external teacher. The best-known examples of this technique occur in the
backpropagation algorithm, the delta rule, and perceptron rule. In unsupervised
learning (or self-organization) an output unit is trained to respond to clusters
of patterns within the input. In this paradigm the system is supposed to dis-
cover statistically salient features of the input population. Unlike the supervised
learning paradigm, there is no a priori set of categories into which the patterns
are to be classified; rather the system must develop its own representation of
the input stimuli. Reinforcement learning is learning what to do–how to map
situations to actions–so as to maximize a numerical reward signal. The learner
is not told which actions to take, as in most forms of Machine Learning (ML),
but instead must discover which actions yield the most reward by trying them.
In the most interesting and challenging cases, actions may affect not only the
immediate reward, but also the next situation and, through that, all subsequent
rewards. These two characteristics, trial-and-error search and delayed reward are
the two most important distinguishing features of reinforcement learning.

1.2.2 Rough Sets (RS)

Rough set theory [83, 84, 86, 82] is a methodology fairly new to the medi-
cal domain capable of dealing with uncertainty in data. It is used to discover
data dependencies, evaluate the importance of attributes, discover the patterns
of data, reduce redundant objects and attributes, seek the minimum subset of
attributes, recognize and classify objects. Moreover, it is being used for extrac-
tion of rules from databases. Rough sets have proven useful for representation of
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vague regions in spatial data. One advantage of rough sets is creation of readable
if-then rules. Such rules have a potential to reveal new patterns in the data ma-
terial. Furthermore, they also collectively function as a classifier for unseen data.
Unlike other computational intelligence techniques, rough set analysis requires
no external parameters and uses only the information presented in the given
data. One of the nice features of rough sets theory is that its can tell whether
the data is complete or not based on the data itself. If the data is incomplete, the
theory can suggest more information about the objects needed to be collected
in order to build a good classification model. On the other hand, if the data is
complete, rough sets can determine whether there is any redundant information
in the data and find the minimum data needed for classification. This property
of rough sets is very important for applications where domain knowledge is very
limited or data collection is very expensive/laborious because it makes sure the
data collected is good enough to build a good classification model without sac-
rificing the accuracy of the classification model or wasting time and effort to
gather extra information about the objects [83, 84, 86, 82].

In rough sets theory, the data is collected in a table, called decision table.
Rows of the decision table correspond to objects, and columns correspond to
attributes. In the data set, we assume that class labels to indicate the class
to which each example belongs are given. We call the class label the decision
attribute and the rest of the attributes the condition attributes. Rough sets
theory defines three regions based on the equivalent classes induced by the at-
tribute values Lower approximation, upper approximation, and the boundary.
Lower approximation contains all the objects which are classified surely based on
the data collected, and upper approximation contains all the objects which can
be classified probably, while the boundary is the difference between the upper
approximation and the lower approximation. Thus we can define a rough set as
any set represented through its lower and upper approximations. On the other
hand, indiscernibility notion is fundamental to rough set theory. Informally, two
objects in a decision table are indiscernible if one cannot distinguish between
them on the basis of a given set of attributes. Hence, indiscernibility is a func-
tion of the set of attributes under consideration. For each set of attributes we
can thus define a binary indiscernibility relation, which is a collection of pairs of
objects that are indistinguishable from each other. An indiscernibility relation
partitions the set of cases or objects into a number of equivalence classes. An
equivalence class of a particular object is simply the collection of objects that
are indiscernible to the object in question. Here we provide an explanation of the
basic framework of rough set theory, along with some of the key definitions. A re-
view of this basic material can be found in sources such as [83, 84, 86, 82, 77, 125]
and many others.

1.2.3 Fuzzy Logic (FL) and Fuzzy Sets (FS)

Zadeh [121] introduced the concept of fuzzy logic to present vagueness in lin-
guistics, and further implement and express human knowledge and inference ca-
pability in a natural way. Fuzzy logic starts with the concept of a fuzzy set. An
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FS set is a set without a crisp, clearly defined boundary. It can contain elements
with only a partial degree of membership. A Membership Function (MF) is a
curve that defines how each point in the input space is mapped to a membership
value (or degree of membership) between 0 and 1. The input space is sometimes
referred to as the universe of discourse. Let X be the universe of discourse and x
be a generic element of X . A classical set A is defined as a collection of elements
or objects x ∈ X , such that each x can either belong to or not belong to the
set A, A � X . By defining a characteristic function (or membership function)
on each element x in X , a classical set A can be represented by a set of ordered
pairs (x, 0) or (x, 1), where 1 indicates membership and 0 non-membership. Un-
like conventional set mentioned above, fuzzy set expresses the degree to which
an element belongs to a set. Hence the characteristic function of a fuzzy set is
allowed to have value between 0 and 1, denoting the degree of membership of
an element in a given set. If X is a collection of objects denoted generically by
x, then a fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, μA(x)) | x ∈ X} (1.1)

μA(x) is called the membership function of linguistic variable x in A, which
maps X to the membership space M , M = [0, 1], where M contains only two
points, 0 and 1, A is crisp, and μA(x) is identical to the characteristic function
of a crisp set. Triangular and trapezoidal membership functions are the simplest
functions formed using straight lines. Some of the other shapes are Gaussian,
generalized bell, sigmoidal, and polynomial based curves.

Figure 1.2, illustrates the shapes of two commonly used MFs. The most im-
portant thing to realize about fuzzy logical reasoning is the fact that it is a
superset of standard Boolean logic.

Fig. 1.2. Shapes of two commonly used MFs

1.2.4 Evolutionary Algorithms (EA)

Evolutionary Algorithms are adaptive methods, which may be used to solve
search and optimization problems, based on the genetic processes of biological
organisms. Over many generations, natural populations evolve according to the
principles of natural selection and “survival of the fittest,” first clearly stated
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by Charles Darwin in The Origin of Species. By mimicking this process, evolu-
tionary algorithms are able to ‘evolve’ solutions to real world problems, if they
have been suitably encoded [30]. Usually grouped under the term Evolutionary
Algorithms (EA) or Evolutionary Computation (EC), we find the domains of ge-
netic algorithms [43, 35], evolution strategies [8], evolutionary programming [32],
genetic programming [57], and learning classifier systems [15]. They all share a
common conceptual base of simulating the evolution of individual structures via
processes of selection, mutation, and reproduction. The processes depend on the
perceived performance of the individual structures as defined by the environment
(problem).

EAs deal with parameters of finite length, which are coded using a finite
alphabet, rather than directly manipulating the parameters themselves. This
means that the search is unconstrained neither by the continuity of the function
under investigation, nor the existence of a derivative function.

Genetic Algorithm (GA) is assumed that a potential solution to a problem
may be represented as a set of parameters. These parameters (known as genes)
are joined together to form a string of values (known as a chromosome). A gene
(also referred to a feature, character or detector) refers to a specific attribute that
is encoded in the chromosome. The particular values the genes can take are called
its alleles. The position of the gene in the chromosome is its locus. Encoding
issues deal with representing a solution in a chromosome and unfortunately, no
one technique works best for all problems. A fitness function must be devised for
each problem to be solved. Given a particular chromosome, the fitness function
returns a single numerical fitness or figure of merit, which will determine the
ability of the individual, which that chromosome represents. Reproduction is
the second critical attribute of GAs where two individuals selected from the
population are allowed to mate to produce offspring, which will comprise the
next generation. Having selected two parents, their chromosomes are recombined,
typically using the mechanisms of crossover and mutation.

There are many ways in which crossover can be implemented. In a single point
crossover two chromosome strings are cut at some randomly chosen position,
to produce two ‘head’ segments, and two ‘tail’ segments. The tail segments are
then swapped over to produce two new full-length chromosomes. Crossover is not
usually applied to all pairs of individuals selected for mating. Another genetic
operation is mutation, which is an asexual operation that only operates on one
individual. It randomly alters each gene with a small probability. Traditional
view is that crossover is the more important of the two techniques for rapidly
exploring a search space. Mutation provides a small amount of random search,
and helps ensure that no point in the search space has a zero probability of being
examined.

If the GA has been correctly implemented, the population will evolve over
successive generations so that the fitness of the best and the average individual
in each generation increases towards the global optimum. Selection is the sur-
vival of the fittest within GAs. It determines which individuals are to survive to
the next generation. The selection phase consists of three parts. The first part
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involves determination of the individual’s fitness by the fitness function. A fitness
function must be devised for each problem; given a particular chromosome, the
fitness function returns a single numerical fitness value, which is proportional
to the ability, or utility, of the individual represented by that chromosome. For
many problems, deciding upon the fitness function is very straightforward, for
example, for a function optimization search; the fitness is simply the value of
the function. Ideally, the fitness function should be smooth and regular so that
chromosomes with reasonable fitness are close in the search space, to chromo-
somes with slightly better fitness. However, it is not always possible to construct
such ideal fitness functions. The second part involves converting the fitness func-
tion into an expected value followed by the last part where the expected value
is then converted to a discrete number of offsprings. Some of the commonly
used selection techniques are roulette wheel and stochastic universal sampling.
Genetic programming applies the GA concept to the generation of computer pro-
grams. Evolution programming uses mutations to evolve populations. Evolution
strategies incorporate many features of the GA but use real-valued parameters
in place of binary-valued parameters. Learning classifier systems use GAs in
machine learning to evolve populations of condition/action rules.

1.2.5 Particle Swarm Optimization (PSO)

Swarm intelligence [54] is a collective behavior of intelligent agents in decen-
tralized systems. Although there is typically no centralized control dictating the
behavior of the agents, local interactions among them often cause a global pat-
tern to emerge. Most of the basic ideas are derived from real swarms in the nature
including ant colonies, bird flocking, honeybees, bacteria and microorganisms,
etc. Ant Colony Optimization (ACO), have already been applied successfully to
solve several engineering optimization problems. Swarm models are population-
based and the population is initialized with a set of potential solutions. These
individuals are then manipulated (optimized) over many iterations using several
heuristics inspired from the social behavior of insects in an effort to find the
optimal solution. Ant colony algorithms are inspired by the behavior of natu-
ral ant colonies, which solve their problems by multi agent cooperation using
indirect communication through modifications in the environment. Ants release
a certain amount of pheromone (hormone) while walking, and each ant prefers
(probabilistically) to follow a direction, which is rich of pheromone. This simple
behavior explains why ants are able to adjust to changes in the environment,
such as optimizing shortest path to a food source or a nest. In ACO, ants use
information collected during past simulations to direct their search and this in-
formation is available and modified through the environment. Recently ACO
algorithms have also been used for clustering data sets [51].

The concept of particle swarms, although initially introduced for simulating
human social behaviors, has become very popular these days as an efficient search
and optimization technique. The Particle Swarm Optimization (PSO) [53], as
it is called now, does not require any gradient information of the function to
be optimized, uses only primitive mathematical operators, and is conceptually
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very simple. Since its advent in 1995, PSO has attracted the attention of many
researchers all over the world resulting in a huge number of variants of the basic
algorithm and many parameter automation strategies.

The canonical PSO model consists of a swarm of particles, which are initialized
with a population of random candidate solutions [53]. They move iteratively
through the d-dimension problem space to search for new solutions, where the
fitness, f , can be calculated as the certain qualities measure. Each particle has a
position represented by a position-vector xi (i is the index of the particle), and
a velocity represented by a velocity-vector vi. Each particle remembers its own
best position so far in a vector x#

i , and its j-th dimensional value is x#
ij . The

best position-vector among the swarm so far is then stored in a vector x∗, and
its j-th dimensional value is x∗

j . During the iteration time t, the update of the
velocity from the previous velocity to the new velocity is determined by (1.2).
The new position is then determined by the sum of the previous position and
the new velocity by (1.3).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗

j (t) − xij(t)). (1.2)

xij(t + 1) = xij(t) + vij(t + 1). (1.3)

where w is called as the inertia factor, r1 and r2 are the random numbers, which
are used to maintain the diversity of the population, and are uniformly dis-
tributed in the interval [0,1] for the j-th dimension of the i-th particle. c1 is a
positive constant, called the coefficient of the self-recognition component, c2 is
a positive constant, called the coefficient of the social component. From (1.2), a
particle decides where to move next, considering its own experience, which is the
memory of its best past position, and the experience of its most successful parti-
cle in the swarm. In the particle swarm model, the particle searches the solutions
in the problem space with a range [−s, s] (If the range is not symmetrical, it
can be translated to a corresponding symmetrical range.) In order to guide the
particles effectively in the search space, the maximum moving distance during
one iteration must be clamped in between the maximum velocity [−vmax, vmax]
given in (1.4):

vij = sign(vij)min(|vij | , vmax). (1.4)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be s, i.e.
p = 1. The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated after
a fixed number of iterations.

• Number of iterations without improvement: the optimization process is ter-
minated after a fixed number of iterations without any improvement.

• Minimum objective function error: the error between the obtained objective
function value and the best fitness value is less than a pre-fixed anticipated
threshold.
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1.3 CI in Gene Expression

Gene expression refers to a process through which the coded information of a
gene is converted into structures operating in the cell. It provides the physical
evidence that a gene has been turned on or activated. Expressed genes include
those that are transcribed into mRNA and then translated into protein and those
that are transcribed into RNA but not translated into protein (e.g., transfer and
ribosomal RNAs) [64, 71]. The expression levels of thousands of genes can be
measured at the same time using the modern microarray technology [87, 127].
DNA microarrays usually consist of thin glass or nylon substrates containing
specific DNA gene samples spotted in an array by a robotic printing device.
Researchers spread fluorescently labeled mRNA from an experimental condition
onto the DNA gene samples in the array. This mRNA binds (hybridizes) strongly
with some DNA gene samples and weakly with others, depending on the inherent
double helical characteristics. A laser scans the array and sensors to detect the
fluorescence levels (using red and green dyes), indicating the strength with which
the sample expresses each gene. The logarithmic ratio between the two intensities
of each dye is used as the gene expression data.

In this section, we provide a substantial review of the state of the art research,
which focuses on the application of computational intelligence to different bioin-
formatics related Gene Expression problems. We also discuss some represen-
tative methods to provide inspiring examples to illustrate how CI could be ap-
plied to resolve bioinformatics Gene Expression problems and how Gene Expres-
sion problems could be analyzed, processed, and characterized by computational
intelligence.

1.3.1 Gene Expression Data Clustering

In the field of pattern recognition, clustering [48] refers to the process of par-
titioning a dataset into a finite number of groups according to some similarity
measure. Currently, it has become a widely used process in microarray engi-
neering for understanding the functional relationship between groups of genes.
Clustering was used, for example, to understand the functional differences in
cultured primary epatocytes relative to the intact liver [9]. In another study,
clustering techniques were used on gene expression data for tumor and normal
colon tissue probed by oligonucleotide arrays [4].

A number of clustering algorithms, including hierarchical clustering [113, 97],
Principle Component Analysis (PCA) [119, 89], genetic algorithms [59], and ar-
tificial neural networks [42, 101, 107], have been used to cluster gene expression
data. However, in 2002, Yuhui et al. [120] proposed a new approach to analysis
of gene expression data using Associative Clustering Neural Network (ACNN).
ACNN dynamically evaluates similarity between any two gene samples through
the interactions of a group of gene samples. It exhibits more robust perfor-
mance than the methods with similarities evaluated by direct distances, which
has been tested on the leukemia data set. The experimental results demonstrate
that ACNN is superior in dealing with high dimensional data (7,129 genes).
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The performance can be further enhanced when some useful feature selection
methodologies are incorporated. The study has shown ACNN can achieve 98.61%
accuracy on clustering the Leukemias data set with correlation analysis.

Herrero et al. [42] used the Self-Organizing Tree Algorithm (SOTA) for anal-
ysis of gene expression data coming from DNA array experiments, using an
unsupervised neural network. DNA array technologies allow monitoring thou-
sands of genes rapidly and efficiently. One of the interests of these studies is the
search for correlated gene expression patterns, and this is usually achieved by
clustering them. The result of the algorithm is a hierarchical cluster obtained
with the accuracy and robustness of a neural network. SOTA clustering confers
several advantages over classical hierarchical clustering methods. The clustering
process is performed from top to bottom, i.e. the highest hierarchical levels are
resolved before going to the details of the lowest levels. The growing can be
stopped at the desired hierarchical level. Moreover, a criterion to stop the grow-
ing of the tree, based on the approximate distribution of probability obtained
by randomisation of the original data set, is provided. In addition, obtaining
average gene expression patterns is a built-in feature of the algorithm. Different
neurons defining the different hierarchical levels represent the averages of the
gene expression patterns contained in the clusters.

Xiao et al. [116] proposed a new clustering approach based on the synergism
of the PSO and Self Organizing Maps (SOM). The authors achieved promising
results by applying the hybrid SOM-PSO algorithm over the gene expression
data of yeast and rat hepatocytes. We will briefly discuss their approach in the
following paragraphs. The idea of the SOM [56] stems from the orderly mapping
of information in the cerebral cortex. With SOMs, high dimensional datasets
are projected onto a one- or two-dimensional space. Typically, a SOM has a two
dimensional lattice of neurons and each neuron represents a cluster. The learning
process of a SOM is unsupervised. All neurons compete for each input pattern
and the neuron that is chosen for the input pattern wins.

In the approach proposed by Xiao et al., PSO is used to evolve the weights for
the SOM. In the first stage of the hybrid SOM/PSO algorithm, a SOM is used to
cluster the dataset. Authors used a SOM with conscience at this step. Conscience
directs each component that takes part in competitive learning toward having
the same probability to win. Conscience is added to the SOM by assigning each
output neuron a bias. The output neuron must overcome its own bias to win. The
objective is to obtain a better approximation of pattern distribution. The SOM
normally runs for 100 iterations and generates a group of weights. In the second
stage, PSO is initialized with the weights produced by the SOM in the first stage.
Then a gbest PSO is used to refine the clustering process. Each particle consists
of a complete set of weights for the SOM. The dimension of each particle is the
number of input neurons of the SOM times the number of output neurons of the
SOM. The objective of PSO is to improve the clustering result by evolving the
population of particles.

Microarrays have recently made it possible to monitor the activity of thou-
sands of genes simultaneously. They offer new insights into the biology of a cell.
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However, the data produced by microarrays poses several challenges to over-
come. One major task in the analysis of microarray data is to reveal structures
despite a large noise component in the data. Futschik and Kasabov [33] used
Fuzzy C-Means (FCM) clustering to achieve a robust analysis of gene expression
time-series. Authors address the issues of parameter selection and cluster valid-
ity. Using statistical models to simulate gene expression data, they show that
FCM can detect genes belonging to different classes.

Chinatsu and Hanai [7] applied the Fuzzy Adaptive Resonance Theory (Fuzzy
ART) [106] to gene clustering of DNA microarray data and their result indicate
that the methodology may be more suitable for biological applications than
most other methods including hierarchical clustering, k-means clustering, and
SOM. In addition, the authors compared their technique with the fuzzy c-means
clustering method and obtained comparable results.

Okada et al. [79] point out that although hierarchical clustering has been
extensively used in analyzing patterns in microarray gene expression data, its
biological interpretation is not easy. The authors propose a novel algorithm that
automatically finds biologically interpretable cluster boundaries in hierarchical
clustering by referring to gene annotations stored in public genome databases.
In addition, the proposed algorithm has a new function of generating a set of
clusters that are independent of each other with respect to the distributions of
gene functions. The authors claim that this function would enable investigators
to efficiently identify non-redundant and biologically-independent clusters.

An Evolutionary Rough C-Means Clustering

Cluster analysis [104] is one key step in understanding how the activity of genes
varies during biological processes and is affected by disease states and cellular
environments. In particular, clustering can be used either to identify sets of
genes according to their expression in a set of samples [26, 113], or to cluster
samples into homogeneous groups that may correspond to particular macroscopic
phenotypes [36]. The latter is in general more difficult, but is very valuable in
clinical practice.

Several clustering algorithms have been developed and applied in bioinformat-
ics problems, however, most of them cannot process objects in hybrid numeri-
cal/nominal feature space or with missing values. In most of them, the number
of clusters should be manually determined and the clustering results are sensi-
tive to the input order of the objects to be clustered. These limit applicability
of the clustering and reduce the quality of clustering. To solve this problem,
an improved clustering algorithm based on rough set and entropy theory was
presented by Chun-Bao et al. [19]. The approach aims at avoiding the need to
pre-specify the number of clusters, and clustering in both numerical and nominal
feature space with the similarity introduced to replace the distance index.

At the same time, rough sets are used to represent clusters in terms of upper
and lower approximations. However, the relative importance of these approxi-
mation parameters, as well as a threshold parameter, need to be tuned for good
partitioning. The evolutionary rough c-means algorithm employs GAs to tune
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these parameters. The Davies-Bouldin index is used as the fitness function to
be minimized. Various values of c are used to generate different sets of clusters,
and GA is employed to generate the optimal partitioning [100].

Lingras [62] argued that incorporation of rough sets into k-means clustering
requires the addition of the concept of lower and upper bounds. Calculation of the
centroids of clusters from conventional k-means needs to be modified to include
the effects of lower as well as upper bounds. The modified centroid calculations
for rough sets are then given by:

cenj = Wlow ×
∑

v∈R(x)

|R(x)| + wup ×
∑

v∈(BNR(x))

|BNR(x)| (1.5)

Where 1 ≤ j ≤ m. The parameters wlow and wup correspond to the relative
importance of lower and upper bounds, and wlow +wup = 1. If the upper bound
of each cluster were equal to its lower bound, the clusters would be conventional
clusters. Therefore, the boundary region BNR(x) will be empty, and the second
term in the equation will be ignored. Thus, the above equation will reduce to
conventional centroid calculations. The next step in the modification of the k-
means algorithms for rough sets is to design criteria to determine whether an
object belongs to the upper or lower bound of a cluster, for more details refer
to [62]. The main steps of the algorithm are provided below.

Algorithm 1. Rough C-Means Algorithm
1: Set xi as an initial means for the c clusters.
2: Initialize the population of particles encoding parameters threshold and wlow

3: Initialize each data object xk to the lower approximation or upper approximation
of clusters ci by computing the difference in its distance by:

diff = d(xk, ceni) − d(xk, cenj), (1.6)

Where ceni and cenj are the cluster centroid pairs.
4: if diff < δ then
5: xk ∈ the upper approximation of the ceni and cenj clusters and can not be in

any lower approximation.
6: Else
7: xk ∈ lower approximation of the cluster ci such that distance d(xk, ceni) is is

minimum over the c clusters.
8: end if
9: Compute a new mean using equation (1.5)

10: repeat
11: statements 3–9
12: until convergence i.e. there is no more new assignments

1.3.2 Rough Sets and DNA Microarray Technology

Biological research is currently undergoing a revolution. With the advent of
microarray technology the behavior of thousands of genes can be measured si-
multaneously. This capability opens a wide range of research opportunities in
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Fig. 1.3. Microarray production process:Microarrays provide the gene expression data.
A sample of 9 experiments from Synovial Sarcoma data is illustrated, n=5,520 genes
in this data set [37, 96].

biology, but the technology generates a vast amount of data that cannot be
handled manually. Computational analysis is thus a prerequisite for the suc-
cess of this technology, and research and development of computational tools
for microarray analysis are of great importance [68]. The DNA microarray tech-
nology provides enormous quantities of biological information about genetically
conditioned susceptibility to diseases [11]. The data sets acquired from microar-
rays refer to genes via their expression levels. Microarray production starts with
preparing two samples of mRNA, as illustrated by Figure 1.3. The sample of in-
terest is paired with a healthy control sample. The fluorescent red/green labels
are applied to both samples. The procedure of samples mixing is repeated for
each of thousands of genes on the slide. Fluorescence of red/green colors indi-
cates to what extent the genes are expressed. The gene expressions can be then
stored in numeric attributes, coupled with, e.g., clinical information about the
patients [11].

One application of microarray technology is cancer studies, where supervised
learning may be used for predicting tumor subtypes and clinical parameters.
Herman et al. [68] present a general rough set approach for classification of
tumor samples analyzed with microarrays. This approach is tested on a data
set of gastric tumors, and authors develop classifiers for six clinical parameters.
This research included only 2,504 genes out of a total of at least 30,000 genes
in the human genome. Some of the genes that were not included in their study
may have a connection to the parameters. In addition, their results show that
it is possible to develop classifiers with a small number of tumor samples, and
that rough set based methods may be well suited for this task. They believe
that rough set based learning combined with feature selection may become an
important tool for microarray analysis.

Rough Discretization

Microarray measurements are real numbers that have to be discretized before
a learning algorithm can be applied on the them. It has been shown that the
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quality of a learning algorithm is dependent on the selected strategy used for
real data discritization [25]. Discretization uses a data transformation procedure
that involves finding cuts which divide the data values into intervals. Values lying
within an interval are then mapped to the same ‘label’ value. Performing this pro-
cess will lead to reduction in the size of the attributes value set and ensure that
the rules that are mined are not too specific. Lots of discretization algorithms
have been developed and applied in bioinformatics problems [68]. Examples of
utilized discretization algorithms include frequency binning, näıve discretization,
entropy-based discretization, discriminant discretization, and Boolean reason-
ing/rough set based discretization [68].

Here we demonstrate some reported examples of using discretization tech-
niques in bioinformatics problems. Many successful work towards this issue has
been addressed and discussed. For example, the rough sets with Boolean rea-
soning (RSBR) algorithm proposed by Zhong et al. [124, 40] was used for dis-
cretization of continuous-valued attributes. The main advantage of RSBR is that
it combines discretization of real valued attributes and classification. The main
steps of the RSBR discretization algorithm are provided below.

Algorithm 2. RSBR Discretization Algorithm
Input: Information system table (S) with real valued attributes Aij and n is the number
of inter values for each attribute.
Output: Information table (ST ) with discretized real valued attribute
1: for Aij ∈ S do
2: Define a set of Boolean variables as follows:

B = {
n∑

i=1

Cai,
n∑

i=1

Cbi

n∑

i=1

Cci, ...,
n∑

i=1

Cni} (1.7)

3: end for
Where

∑n
i=1 Cai corresponds to a set of intervals defined on the variables of

attributes a
4: Create a new information table Snew by using the set of intervals Cai

5: Find the minimal subset of Cai that discerns all the objects in the decision class
D using the following formula:

Υ u = ∧{Φ(i, j) : d(xi �= d(xj)} (1.8)

Where Φ(i, j) is the number of minimal cuts that must be used to discern two
different instances xi and xj in the information table.

Among further research directions, there is hybridization of rough set reduc-
tion framework with gene clustering. For example, in [37] authors used self-
organizing maps to calculate the entropy distance for roughly discretized data.
In another example, Ślȩzak and Wróblewski [95] adapt the rough set-based ap-
proach to deal with gene expression data, where the problem is a huge amount
of genes (attributes) a ∈ A versus small amount of experiments (objects) u ∈ U .
They perform gene reduction using standard rough set methodology based on
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approximate decision reducts applied against specially prepared data. In addi-
tion, the authors used rough discretization algorithm - Every pair of objects
(x, y) ∈ U × U yields a new object, which takes values “≥ a(x)” if and only if
a(y) ≥ a(x); and “≤ a(x)” otherwise; over original genes-attributes a ∈ A. In
this way: 1) They work with desired, larger number of objects improving credi-
bility of the obtained reducts; 2) They produce more decision rules, which vote
during classification of new observations; 3) They avoid an issue of discretization
of real-valued attributes, difficult and leading to unpredictable results in case of
any data sets having much more attributes than objects. The authors illustrated
their method by analysis of gene expression data related to breast cancer.

Another example given by Ślȩzak and Wróblewski [96] extends the standard
rough set-based approach to deal with huge amounts of numeric attributes ver-
sus a small amount of available objects. The authors transform the training data
using a novel way of non-parametric discretization, called roughfication (in con-
trast to fuzzification known from fuzzy logic). Given roughfied data, they apply
standard rough set attribute reduction and then classify the testing data by
voting among the obtained decision rules. Roughfication enables to search for
reducts and rules in the tables with the original number of attributes and far
larger number of objects. It does not require expert knowledge or any kind of
parameter tuning or learning. The authors illustrate it by analysis of gene ex-
pression data, where the number of genes (attributes) is enormously large with
respect to the number of experiments (objects).

Given thousands of attributes against hundreds of objects, we face a few-
objects-many-attributes problem, recognized as one of the main data mining
challenges [118]. Moreover, in the case of gene expression, rough set based meth-
ods usually require discretization (cf. [76])–replacing the original values with the
codes of intervals defined over attribute ranges. This additionally increases the
amount of possible solutions of the optimization problem, now reformulated as
searching for optimal subsets of attributes (genes) coupled with their optimal
interval settings. Such a huge space of parameters, given too small samples of ob-
jects, leads to data overfitting (cf. [118]) and yields a kind of unreliability of the
rough set techniques applied so far (cf. [109]). Ślȩzak and Wróblewski [96] report
an alternative method, illustrated by Figure 1.4. They call it rough discretization
(or roughfication, compared to fuzzification).

As has been reported, e.g., [68], some discretization methods seem to work bet-
ter than others for the problem of gene expression classification. Frequency bin-
ning and entropy-based discretization gave good results. Discretization based on
linear discriminant analysis was also useful. The entropy-based method appeared
to handle skewed class distributions better than the other methods. Boolean rea-
soning discretization had often a poor performance and behaved differently from
the rest of the discretization methods. The AUC had a tendency to increase with
additional genes. It is likely that this is due to the global nature of this method.
The method considers all attributes at once when it creates cuts. The feature
selection method, on the other hand, selects genes individually such that each
selected gene may be a good classifier in itself. So, it is more appropriate to
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Fig. 1.4. Rough discretization [96]. Top: A sample with 3 numeric attributes and 3
decision classes. Right: Its roughfied version. Middle: Some positive regions for the
roughfied table. Bottom: Rules induced by reduct a∗, b∗.

make cuts individually for each gene. The Boolean reasoning approach is con-
sequently less suited for this problem, but it may yield a good performance in
other situations.

1.4 CI in Protein Sequence Classification

The problem of protein sequence classification is a crucial task in the interpre-
tation of genomic data. Many high-throughput systems were developed with the
aim of categorizing proteins based only on their sequences. However, modeling
how proteins have evolved can also help in the classification task of sequenced
data. Hence the phylogenetic analysis has gained importance in the field of pro-
tein classification. Busa-Fekete et al. [16] provide an overview about the problem
of protein sequence classification area and propose two algorithms that are well
suited to this scope. The two algorithms are based on a weighted binary tree
representation of protein similarity data. The first one is called TreeInsert which
assigns the class label to the query by determining a minimum cost necessary
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to insert the query in the (precomputed) trees representing the various classes.
Then the TreeNN algorithm assigns the label to the query based on an analysis of
the query’s neighborhood within a binary tree containing members of the known
classes. The two algorithms were tested in combination with various sequence
similarity scoring methods (BLAST, Smith-Waterman, Local Alignment Kernel
as well as various compression-based distance scores) using a large number of
classification tasks representing various degrees of difficulty. They reported that,
at the expense of a small computational overhead, both TreeNN and TreeInsert
exceed the performance of simple similarity search (1NN) as determined by ROC
analysis, at the expense of a modest computational overhead. Combined with
a fast tree-building method, both algorithms are suitable for web-based server
applications.

Mapping the pathways that give rise to metastasis is one of the key challenges
of breast cancer research. Recently, several large-scale studies have shed light on
this problem through analysis of gene expression profiles to identify markers
correlated with metastasis. Han-Yu Chuang et al. [21] apply a protein-network-
based approach that identifies markers not as individual genes but as subnet-
works extracted from protein interaction databases. The resulting subnetworks
provide novel hypotheses for pathways involved in tumor progression. Although
genes with known breast cancer mutations are typically not detected through
analysis of differential expression, they play a central role in the protein net-
work by interconnecting many differentially expressed genes. Authors find that
the subnetwork markers are more reproducible than individual marker genes se-
lected without network information, and that they achieve higher accuracy in
classification of metastatic versus non-metastatic tumors.

As shown in Figure 1.5, the subnetwork markers were significantly more re-
producible between data sets than were individual marker genes selected without
network information (12.7 versus 1.3%). In terms of biological function, extra-
cellular signal-regulated kinase 1 (MAPK3) was reproducible as a central node
in subnetworks identified from both data sets (Figure 1.5C versus Figure 1.5D.
Figure 1.5E and 1.5F illustrate two other subnetworks that were discriminative
in both data sets, although there was less consistency in the expression levels
of genes comprising these subnetworks. For instance, PKMYT1 is significantly
differentially expressed in van de Vijver et al [110] but not in Wang et al. [112]
(Figure 1.5E; diamond versus circle), whereas CD44 is significantly differentially
expressed in Wang et al. [112] but not in van de Vijver et al. [110] (Figure 1.5F).
However, by aggregating the expression ratios of these genes with their network
neighbors, the subnetworks containing these genes are found to be significant in
both data sets.

Classification of protein sequences into families is an important tool in the
annotation of structural and functional properties to newly discovered proteins.
Mohamed et al [72] present a classification system using pattern recognition
techniques to create a numerical vector representation of a protein sequence and
then classify the sequence into a number of given families. Authors introduce the
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Fig. 1.5. Subnetwork markers across data sets [21]

use of fuzzy ARTMAP classifiers and show that coupled with a genetic algorithm
based feature subset selection, the system is able to classify protein sequences
with an accuracy of 93%. This accuracy is compared with numerous other clas-
sification tools and demonstrates that the fuzzy ARTMAP is suitable due to its
high accuracy, quick training times, and ability for incremental learning.

Building improved intelligent protein sequence classification systems for ef-
fectively searching large biological database is significant for developing com-
petitive pharmacological products. Wang et al [111] describe a methodology for
constructing a neural protein classifier with various input features, rather than
to train a neural classifier based on a given neural network architecture and some
available data. A set of fuzzy classification rules with confidence factors can be
extracted directly from the generalized radial basis function (GRBF) networks.
The initial fuzzy rule set is refined using a new objective function, which com-
promises between misclassification rate and generalization capability, and GA
programming. Their results compared favorably with other standard machine
learning techniques.
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1.5 CI in Gene Selection

Selecting informative and discriminative genes from huge microarray gene ex-
pression data is an important and challenging bioinformatics research topic.
There have been many successful projects in this area reported in the literature.
For example, Fernando et al. [29] demonstrate how a supervised fuzzy pattern
algorithm can be used to perform DNA microarray data reduction over real
data. The benefits of their method can be employed to find biologically signifi-
cant insights relating to meaningful genes in order to improve previous successful
techniques. Experimental results on acute myeloid leukemia diagnosis show the
effectiveness of the proposed approach.

A new method combining correlation based clustering and rough sets attribute
reduction for gene selection from gene expression data is proposed by Lijun et
al [99]. Correlation based clustering is used as a filter to eliminate the redun-
dant attributes, then the minimal reduct of the filtered attribute set is reduced
by rough sets. Three different classification algorithms are employed to evaluate
the performance of the proposed method. High classification accuracies achieved
on two public gene expression data sets show that the introduced method is
successful for selecting high discriminative genes for classification task. The ex-
perimental results indicate that rough sets based methods have the potential to
become a useful tool in bioinformatics.

The approach to cancer classification based on selected gene expression data,
rather than all the genes in the dataset, is important for efficient cancer di-
agnosis. Dingfang et al. [58] present a gene selection method, called RMIMR,
which searches for the subset through maximum relevance and maximum posi-
tive interaction of genes. Compared to the classical methods based on statistics,
information theory, and regression, this method led to significantly improved
classification in experiments on 4 gene expression datasets.

Banerjee et al. [12] used an evolutionary rough feature selection algorithm for
classifying microarray gene expression patterns. Since the data typically consist
of a large number of redundant features, an initial reduction of the attributes
is done to enable faster convergence. Rough set theory is employed to generate
reducts, which represent the minimal sets of nonredundant features capable of
discerning between all objects, in a multiobjective framework. The effectiveness
of the algorithm is demonstrated on three cancer datasets.

Zhang et al. [123] present recent Support Vector Machine (SVM) classification
approaches for gene selection, cancer classification, and functional gene classifi-
cation, followed by analysis on the advantages and limitations of SVM on these
applications.

Li et al. [59] introduced a multivariate approach that selects a subset of predic-
tive genes jointly for sample classification based on expression data. They tested
the algorithm on colon and leukemia data sets. The authors examined the sen-
sitivity, reproducibility and stability of gene selection/sample classification to
the choice of parameters of the algorithm. They used hybrid method that uses
a genetic algorithms and the K-Nearest Neighbor (KNN) to identify genes that
can jointly discriminate between different classes of samples (e.g. normal versus
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tumor). The genes identified are subsequently used to classify independent test
set samples. The authors reported that the GA/KNN method is capable of se-
lecting a subset of predictive genes from a large noisy data set for sample classi-
fication. It is a multivariate approach that can capture the correlated structure
in the data.

Yuanchen et al. [41] proposed a fuzzy-granular method for the gene selection
task. Firstly, genes are grouped into different function granules with the fuzzy c-
means algorithm (FCM). And then informative genes in each cluster are selected
with the signal-to-noise metric (S2N). With fuzzy granulation, information loss
in the process of gene selection is decreased. As a result, more informative genes
for cancer classification are selected and more accurate classifiers can be modeled.
The simulation results on two publicly available microarray expression datasets
show that the proposed method is more accurate than traditional algorithms for
cancer classification.

Gene Selection Using Neural Networks

Accurate diagnosis and classification are the key issues for the optimal treatment
of cancer patients. Several studies demonstrate that cancer classification can be
estimated with high accuracy, sensitivity, and specificity from microarray-based
gene expression profiling using artificial neural networks.

Huang and Liao [45] introduced a comprehensive study to investigate the ca-
pability of the probabilistic neural networks (PNN) associated with a feature se-
lection method, the so-called signal-to-noise statistic, in cancer classification. The
signal-to-noise statistic, which represents the correlation with the class distinc-
tion, is used to select the marker genes and trim the dimension of data samples
for the PNN. The experimental results show that the association of the prob-
abilistic neural network with the signal-to-noise statistic can achieve superior
classification results for two types of acute leukemias and five categories of em-
bryonal tumors of central nervous system with satisfactory computation speed.
Furthermore, the signal-to-noise statistic analysis provides candidate genes for
future study in understanding the disease process and the identification of po-
tential targets for therapeutic intervention.

Fogel [31] highlights recent advancements in the coupling evolutionary com-
putation with artificial neural networks for microarray class prediction and dis-
covery. The combination of these methods holds great promise for automated
feature selection and data analysis. Neural networks have been noted elsewhere
in the literature as particularly useful for microarray data clustering and classi-
fication. For instance, Khan et al. [55] developed a method of classifying cancers
to specific diagnostic categories based on their gene expression signatures using
artificial neural networks. The authors trained the ANNs using a small, round
blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct
diagnostic categories and often present diagnostic dilemmas in clinical practice.
The ANNs correctly classified all samples and identified genes most relevant to
the classification. Expression of several of these genes has been reported in SR-
BCTs, but most have not been associated with these cancers. To test the ability
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Fig. 1.6. Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks [55]

of the trained ANN models to recognize SRBCTs, they analyzed additional blind
samples that were not previously used for training, and correctly classified them
in all cases. This study demonstrates the potential applications of these methods
for tumor diagnosis and the identification of candidate targets for therapy.

As an illustrated in Figure 1.6a, the entire data-set of all 88 experiments
was first quality filtered (1) and then the dimensionality was further reduced by
principal component analysis (PCA) to 10 PC projections (2), from the original
6,567 expression values. Next, the 25 test experiments were set aside and the 63
training experiments were randomly partitioned into 3 groups (3). One of these
groups was reserved for validation and the remaining 2 groups for calibration
(4). ANN models were then calibrated using for each sample the 10 PC values
as input and the cancer category as output (5). For each model, the calibration
was optimized with 100 iterative cycles (epochs). This was repeated using each
of the 3 groups for validation (6). The samples were again randomly partitioned
and the entire training process repeated (7). For each selection of a validation
group one model was calibrated, resulting in a total of 3750 trained models. Once
the models were calibrated they were used to rank the genes according to their
importance for the classification (8). The entire process (2–7) was repeated using
only top ranked genes (9). The 25 test experiments were subsequently classified
using all the calibrated models. Figure 1.6b presents monitoring of the calibration
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of the models. The average classification error per sample (using a summed
square error function) is plotted during the training iterations (epochs) for both
the training and the validation samples. A pair of lines, dark (training) and light
(validation), represents one model. The decrease in the classification errors with
increasing epochs demonstrates the learning of the models to distinguish these
cancers. The results shown are for 200 different models, each corresponding to a
random partitioning of the data. All the models performed well for both training
and validation as demonstrated by the parallel decrease (with increasing epochs)
of the average summed square classification error per sample. In addition, there
was no sign of over-training: if the models begin to learn features in the training
set, which are not present in the validation set, this would result in an increase
in the error for the validation at that point and the curves would no longer
remain parallel. Figure 1.6c shows minimizing the number of genes. The average
number of misclassified samples for all 3,750 models is plotted against increasing
number of used genes. The misclassifications were minimized to zero using the
96 highest ranked genes [31, 55].

While it is clear that neural network methods are well suited to microarray
analysis, their proper training and optimization is a prerequisite for superior
performance. A standard approach to neural network training is the use of back-
propagation to optimize the weight assignments for a fixed neural network topol-
ogy. This approach generally forces the user to choose the appropriate number
of features to use and a fixed neural network topology. Backpropagation itself
can also lead to suboptimal weight assignment if there are many local optima
in the search space. Optimizing neural networks with stochastic optimization
methods such as evolutionary computation, however, can outperform these clas-
sic methods by avoiding local optima and simultaneously identifying the most
appropriate features to use for prediction [31].

In another study, Hwang et al. [47] applied neural networks in classification of
patient samples using gene expressions levels. Here all gene expression levels are
fed to the neural tree as input and the output is a binary classification. Through a
structural learning process, essential genes for cancer classification are included
into the neural tree and less important genes are weeded out automatically.
In neural tree learning, all gene expression levels were linearly scaled into the
interval [0.01, 0.99]. For the output value of neural tree learning, one was set to
0.01 and the other one to 0.99. Using this setup, their predicted accuracy was
86% and the number of genes selected was 16. Gene selection using Feed Forward
Back Propagation Neural Network as a classifier is illustrated in Figure 1.7.

Francesca et al. [92] proposed a new gene selection method for analyzing mi-
croarray experiments pertaining to two classes of tissues and for determining
relevant genes characterizing differences between the two classes. The new tech-
nique is based on Switching Neural Networks (SNN), learning machines that
assign a relevance value to each input variable, and adopts Recursive Feature
Addition (RFA) for performing gene selection. The performances of SNN-RFA
are evaluated by considering its application on two real and two artificial gene
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Fig. 1.7. Gene selection using Neural Network as classifere [81]

expression datasets generated according to a proper mathematical model that
possesses biological and statistical plausibility.

Gene selection algorithms for cancer classification, based on the expression
of a small number of biomarker genes, have been the subject of considerable
research in recent years [81]. For instance, Feng et al. [20] use a t- test-based
feature selection method to choose some important genes from thousands of
genes. After that, authors classify the microarray data sets with a Fuzzy Neural
Network (FNN). The FNN combines important features of initial fuzzy model
self-generation, parameter optimization, and rule-base simplification. They ap-
plied the FNN to three well-known gene expression data sets, i.e., the lymphoma
data set (with 3 sub-types), small round blue cell tumor (SRBCT) data set (with
4 sub-types), and the liver cancer data set (with 2 classes, i.e., non-tumor and
hepatocellular carcinoma (HCC)). Their results in all the three data sets show
that the FNN can obtain 100% accuracy with a much smaller number of genes
in comparison with previously published methods. They reported that in view of
the smaller number of genes required by the FNN and its high accuracy,the FNN
classifier not only helps biological researchers differentiate cancers that are diffi-
cult to be classified using traditional clinical methods, but also helps biological
researchers focus on a small number of important genes to find the relationships
between those important genes and the development of cancers (see also [117]).

1.6 CI in DNA Fragment Assembly (FA)

The fragment assembly problem (FAP) deals with sequencing of DNA. Currently
strands of DNA, longer than approximately 500 base pairs, cannot be sequenced
very accurately. As a consequence, in order to sequence larger strands of DNA,
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they are first broken into smaller pieces. The FAP is then to reconstruct the orig-
inal molecule’s sequence from the smaller fragment sequences. FAP is basically
a permutation problem, similar in spirit to the TSP, but with some important
differences (circular tours, noise, and special relationships between entities) [94].
Meksangsouy and Chaiyaratana [67] attempted to solve the DNA fragment re-
ordering problem with the ant colony system. The authors investigated two
types of assembly problems: single-contig and multiple-contig problems. The
simulation results indicate that the ant colony system algorithm outperforms
the nearest neighbor heuristic algorithm when multiple-contig problems are
considered.

The DNA fragment assembly is a problem to be solved in the early phases of
the genome project and thus is critical since the other steps depend on its accu-
racy. This is an NP-hard combinatorial optimization problem which is growing
in importance and complexity as more research centers become involved on se-
quencing new genomes. Various heuristics, including computational intelligence
algorithms, have been designed for solving the fragment assembly problem, but
since this problem is a crucial part of any sequencing project, better assem-
blers are needed. Here we demonstrated some reported examples of using the CI
techniques in DNA Fragment Assembly problem.

Wannasak et al. [114] present the use of a combined ant colony system (ACS)
and nearest neighbour heuristic (NNH) algorithm in DNA fragment assembly.
The assembly process can be treated as combinatorial optimization where the
aim is to find the right order of each fragment in the ordering sequence that
leads to the formation of a consensus sequence that truly reflects the original
DNA strands. The assembly procedure proposed is composed of two stages:
fragment assembly and contiguous sequence (contig) assembly. In the fragment
assembly stage, a possible alignment between fragments is determined where the
fragment ordering sequence is created using the ACS algorithm. The resulting
contigs are then assembled together using the NNH rule. Their results indicate
that in overall the performance of the combined ACS/NNH technique is superior
to that of a standard sequence assembly program (CAP3), which is widely used
by many genomic institutions.

Angeler et al. [6] describes an alternative approach to the fragment assembly
problem. The key idea is to train a recurrent neural network (RNN) to track a
sequence of bases constituting a given fragment and to assign to the same cluster
all sequences which are well tracked by this network. The authors make use of
a 3-layer Recurrent Perceptron and examine both edited sequences from an ftp
site and artificial fragments from a common simulation software. The clusters
they obtain exhibit interesting properties in terms of error filtering, stability and
self consistency; they define as well, with a certain degree of approximation, a
metric on the fragment set. The proposed assembly algorithm is susceptible to
becoming an alternative method with the following properties: (i) high quality of
the rebuilt genomic sequences, (ii) high parallelizability of the computing process
with consequent drastic reduction of the running time.
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1.7 CI in Multiple Sequence Alignment (MSA)

Sequence Alignment (SA) refers to the process of arranging the primary se-
quences of DNA, RNA, or protein to identify regions of similarity that may be
a consequence of functional, structural, or evolutionary relationships between
the sequences. Given two sequences X and Y , a pair-wise alignment indicates
positions of each sequence that are considered to be functionally or evolution-
arily related. From a family S = (S0, S1, . . . , SN−1) of N sequences, we would
like to find out common patterns of this family. Since aligning each pair of se-
quences from S separately often does not reveal the common information, it is
necessary to perform multiple sequence alignment (MSA). A multiple sequence
alignment (MSA) is a sequence alignment of three or more biological sequences,
generally protein, DNA, or RNA. In general, the input set of query sequences
are assumed to have an evolutionary relationship by which they share a linkage
and are descended from a common ancestor.

To evaluate the quality of an alignment, a popular choice is to use the SP
(sum-of-pairs) score method [63]. The SP score basically sums the substitution
scores of all possible pair-wise combinations of sequence characters in one column
of a multiple sequence alignment. Assuming ci representing the ith character of a
given column in the sequence matrix and match (ci, cj) denoting the comparing
score between characters ci and cj , the score of a column may be computed using
the formula:

SP = (c1, c2, . . . , cN ) =
N−1∑

i=1

N∑

j=i+1

match(ci, cj) (1.9)

Progressive alignment is a heuristic widely used in MSA, but it does not guar-
antee optimality [28]. ClustalW [105] is another popular program that improved
the algorithm presented by Feng and Doolittle [28]. The main shortcoming of
ClustalW is that once a sequence has been aligned, that alignment can never be
modified even if it conflicts with sequences added later.

Recently, Chen et al. [18] took a serious attempt to solve the classicalMSA prob-
lem by using a partitioning approach coupled with the Ant Colony Optimization
(ACO) algorithm. The algorithm consists of three stages. At first, a genetic algo-
rithm is employed to find out the near optimal cut-off points in the original se-
quences from where they must be partitioned vertically. In this way a partitioning
method is continued recursively to reduce the original problem to multiple smaller
MSA problems until the lengths of the subsequences are all less than an accept-
able threshold. Next, an ant colony system is used to align each small subsection
derived from the previous step. The ant system consists of N ants each of which
represents a solution of alignment. Each ant searches for an alignment by mov-
ing on the sequences to choose the matching characters. Let the N sequences be
S = S0, S1, . . . , SN−1. In that case an artificial ant starts from S0[0], the first char-
acter of S0, and selects one character from each of the sequences of S1, . . . , SN−1
matching with S0[0]. From the sequence Si, i = 1, 2, . . . , n1,the ant selects a char-
acter Si[j] by a probability determined by the matching score with S0[0], deviation
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of its location from S0[0] and pheromones trail on the logical edge between Si[j]
and S0[0].In addition, an ant may choose to insert an empty space according to a
predetermined probability. Next, the ant starts from S0[1], selects the characters
of S1, . . . , SN−1 matching with S0[1] to form the second path. Similarly, starting
from S0[2], . . . , S0[|S0| − 1], the ant can form other paths. Here |S0| indicates the
number of characters in the sequence |S0|.

To evaluate an alignment represented by a set of paths, the positions of char-
acters not selected by the ants are calculated first by aligning them to the right
and adding gaps to the left. Next their SP (sum-of-pairs) score is using relation
(1.9). Finally, a solution to the MSA is obtained by concatenating the results
from smaller sub-alignments. The Divide-Ant-MSA algorithm outperformed the
SAGA [78], a leading MSA program based on genetic algorithms, in terms of
both speed and accuracy especially for longer sequences.

Rasmussen and Krink [88] focussed on a new PSO based training method
for Hidden Markov Models (HMMs) in order to solve the MSA problem. The
authors showed how a combination of PSO and evolutionary algorithms can
generate better protein sequence alignments than with more traditional HMM
training methods, such as Baum-Welch [98] and simulated annealing [39].

Genetic algorithm is one of the important and successful approaches in MSA.
Zhang and Huang [122] propose an improved GA method, multiple small-popsize
initialization strategy (MSPIS) and hybrid one-point crossover scheme (HOPCS)
based GA, which can search the solution space in a very efficient manner. The
experimental results show that this improved approach can obtain a better result
compared with traditional GA approach in aligning multiple protein sequences
problem.

DNA matching is a crucial step in sequence alignment. Since sequence align-
ment is an approximate matching process there is a need for good approximation
algorithms. The process of matching in sequence alignment is generally find-
ing longest common subsequences. However, finding the longest common subse-
quence may not be the best solution for either a database match or an assembly.
An optimal alignment of subsequences is based on several factors, such as quality
of bases, length of overlap, etc. Factors such as quality indicate if the data is an
actual read or an experimental error. Fuzzy logic allows tolerance of inexactness
or errors in sub sequence matching. Nasser et al. [75] propose fuzzy logic for ap-
proximate matching of subsequences. Fuzzy characteristic functions are derived
for parameters that influence a match. Authors develop a prototype for a fuzzy
assembler. The assembler is designed to work with low quality data, which is
generally rejected by most of the existing techniques. Authors test the assem-
bler on sequences from two genome projects, namely Drosophila melanogaster
and Arabidopsis thaliana. Their results are compared with other assemblers. The
fuzzy assembler successfully assembled sequences and performed similar and in
some cases better than existing techniques.

In multiple DNA sequence alignment, some researchers used divide-and-
conquer techniques to cut the sequences for the sake of decreasing complexity.
Because the cutting points of sequences of the existing methods are fixed at
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the middle or near-middle points, the performance of sequence alignment of the
existing methods is not good enough. Chen et al. [17] present a new method
for multiple DNA sequence alignment using genetic algorithms and divide-and-
conquer techniques to choose optimal cut points of multiple DNA sequences.
Their experimental results show that the proposed method is better than the
existing methods for dealing with multiple DNA sequence alignment.

The similarity judgement of two sequences is often decomposed in similar-
ity judgements of the sequence events with an alignment process. However, in
some domains like speech or music, sequences have an internal structure which is
important for intelligent processing like similarity judgements. In an alignment
task, this structure can be reflected more appropriately by using two levels in-
stead of aligning event by event. This idea is related to the structural alignment
framework by Markman and Gentner [34]. Weyde and Klaus [115] introduce a
method to align sequences by modeling the segmenting and matching of groups
in an input sequence in relation to a target sequence, detecting variations or
errors. This is realized as an integrated process, using a neuro-fuzzy system. The
selection of segmentations and alignments is based on fuzzy rules which allow
the integration of expert knowledge via feature definitions, rule structure, and
rule weights. The rule weights can be optimized effectively with an algorithm
adapted from neural networks. Thus the results from the optimization process
are still interpretable. The system has been implemented and tested successfully
in a sample application for the recognition of musical rhythm patterns.

Hiroshi [66] proposes a new method for efficient finding of the biologically
optimal alignment of multiple sequences. A key technique used in his method
is deterministic annealing that attempts to find the global optimum in a pa-
rameter space through the annealing process. The author proposes a new simple
probabilistic model for the usually time-consuming iterative process of determin-
istic annealing. Probabilistic parameters of his model are trained from a given
sequences based on the deterministic annealing and Expectation Maximization
algorithm. When a new sequence is given, this sequence is aligned by parsing it
using the trained model. Experimental results show that the proposed method
gives a better performance than other competing methods, like a profile hidden
markov models, and is time-efficient.

1.8 CI in Protein Structure Prediction (PSP)

Protein Structure Prediction (PSP) is one of the most important goals pursued
by bioinformatics and theoretical chemistry. Its aim is prediction of the three-
dimensional structure of proteins from their amino acid sequences, sometimes
including additional relevant information such as the structures of related pro-
teins [128]. In other words, it deals with the prediction of a protein’s tertiary
structure from its primary structure. Protein structure prediction is of high im-
portance in medicine (e.g., in drug design) and biotechnology (e.g., in the design
of novel enzymes). There have been many successful research projects focusing
on this problem. For example, Tang et al. [102] address a problem of predicting
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protein homology between given two proteins. They propose a learning method
that combines the idea of association rules with their previous method called
Granular Support Vector Machines (GSVM), which systematically combines a
SVM with granular computing. The method, called GSVM-AR, uses associa-
tion rules with high enough confidence and significant support to find suitable
granules to build a GSVM with good performance. The authors compared their
method with SVM by KDDCUP04 protein homology prediction data. From the
experimental results, GSVM-AR showed significant improvement compared to
a single SVM.

The interface between combinatorial optimization and fuzzy sets-based
methodologies is the subject of a very active and increasing research. In this con-
text, Balnco et al. [14] describe a fuzzy adaptive neighborhood search (FANS)
optimization heuristic that uses a fuzzy valuation to qualify solutions and adapts
its behavior as a function of the search state. FANS may also be regarded as
a local search framework. The authors show an application of this fuzzy sets-
based heuristic to the protein structure prediction problem in two aspects: (1)
to analyze how the codification of the solutions affects the results and (2) to
confirm that FANS is able to obtain as good results as a genetic algorithm. Both
results shed some light on the application of heuristics to the protein structure
prediction problem and show the benefits and power of combining basic fuzzy
sets ideas with heuristic techniques.

Solving the structure prediction problem for complex proteins is difficult and
computationally expensive. Tantar et al. [103] propose a bicriterion parallel hy-
brid genetic algorithm in order to efficiently deal with the problem using a com-
putational grid. The use of a near-optimal metaheuristic, such as a GA, allows
a significant reduction in the number of explored potential structures. However,
the complexity of the problem remains prohibitive as far as large proteins are
concerned, making the use of parallel computing on the computational grid es-
sential for its efficient resolution. A conjugated gradient-based Hill Climbing local
search is combined with the GA in order to intensify the search in the neighbor-
hood of its provided configurations. Authors consider two molecular complexes:
(1) the tryptophan-cage protein (Brookhaven Protein Data Bank ID 1L2Y) and
(2) a-cyclodextrin. The experimentation results obtained on a computational
grid show the effectiveness of their approach.

Predicting the three-dimensional structure of proteins from their linear se-
quence is one of the major challenges in modern biology. It is widely recog-
nized that one of the major obstacles in addressing this question is that the
standard computational approaches are not powerful enough to search for the
correct structure in the huge conformational space. Genetic algorithms, a coop-
erative computational method, have been successful in many difficult computa-
tional tasks. Thus it is not surprising that in recent years several studies were
performed to explore the possibility of using genetic algorithms to address the
protein structure prediction problem. Ron Roger [108] reviewed a general frame-
work of how genetic algorithms can be used for structure prediction problem.
Using this framework, significant studies that were published in recent years
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are discussed and compared. Applications of genetic algorithms to the related
question of protein alignments are also mentioned. The rationale of why genetic
algorithms are suitable for protein structure prediction is presented, and future
improvements that are still needed are discussed.

The understanding of protein structures is vital to determine the function of
a protein and its interaction with DNA, RNA, and enzymes. The information
about its conformation can provide essential information for drug design and pro-
tein engineering. While there are over a million known protein sequences, only a
limited number of protein structures are experimentally determined. Hence, pre-
diction of protein structures from protein sequences using computer programs
is an important step to unveil proteins’ three dimensional conformation and
functions. As a result, prediction of protein structures has profound theoretical
and practical influence over biological study. Pan [80] shows how to use ma-
chine learning methods with various advanced encoding schemes and classifiers
improve the accuracy of protein structure prediction. The explanation of how
a decision is made is also important for improving protein structure prediction.
The reasonable interpretation is not only useful to guide the “wet experiments,”
but also the extracted rules are helpful to integrate computational intelligence
with symbolic AI systems for advanced deduction. The author also presents
some preliminary results using SVM and decision tree for rule extraction and
prediction interpretation.

1.9 CI in Human Genetics

One goal of genetic epidemiology is to identify genes associated with common,
complex multifactorial diseases. Success in achieving this goal will depend on a
research strategy that recognizes and addresses the importance of interactions
among multiple genetic and environmental factors in the etiology of diseases
such as essential hypertension [50, 73, 91]. The identification of genes that influ-
ence the risk of common, complex disease primarily through interactions with
other genes and environmental factors remains a statistical and computational
challenge in genetic epidemiology. This challenge is partly due to the limitations
of parametric statistical methods for detecting genetic effects that are depen-
dent solely or partially on interactions. Recently, Marylyn et al. [74] took a
serious attempt to introduce a genetic programming neural network (GPNN)
as a method for optimizing the architecture of a neural network to improve
the identification of genetic and gene-environment combinations associated with
a disease risk. This empirical studies suggest GPNN has excellent power for
identifying gene-gene and gene-environment interactions. In [91] Marylyn et al.
continued their study to compare the power of GPNN to stepwise logistic regres-
sion (SLR) and classification and regression trees (CART) for identifying gene-
gene and gene-environment interactions. SLR and CARTare standard methods
of analysis for genetic association studies. Using simulated data,authors show
that GPNN has higher power to identify gene-gene and gene-environment inter-
actions than SLR and CART. These results indicate that GPNN may be a useful
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Fig. 1.8. The steps of the GPNN algorithm [91]

pattern recognition approach for detecting gene-gene and gene-environment in-
teractions in studies of human disease. We will briefly discuss their approach in
the following paragraphs. Their method contains six steps as shown in Figure 1.8
and described in brief as follows.

• Step-1: Set of GPNN parameters. GPNN has a set of parameters that must
be initialized before beginning the evolution of NN models. These include
an independent variable input set, a list of mathematical functions, a fitness
function, and finally the operating parameters of the GP. These operating pa-
rameters include number of demes (or populations), population size, number
of generations, reproduction rate, crossover rate, mutation rate, and migra-
tion [90].

• Step-2: Divide the data based on cross validation. The data are divided into
10 equal parts for 10-fold cross-validation. Here, we will train the GPNN on
9/10 of the data to develop an NN model. They test this model on the 1/10
of the data left out to evaluate the predictive ability of the model.

• Step-3: Generate an initial population. Training of the GPNN begins by gen-
erating an initial population of random solutions. Each solution is a binary
expression tree representation of an NN.

• Step-4:GPNN evaluation. Each GPNN is evaluated on the training set and
its fitness recorded.

• Step-5: The best solutions selection. The best solutions are selected for
crossover and reproduction using a fitness-proportionate selection technique,
called roulette wheel selection, based on the classification error of the training
data.

• Step-6: Classification and prediction error. Classification error is defined as the
proportion of individuals where the disease status was incorrectly
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specified. A predefined proportion of the best solutions are directly copied (re-
produced) into the new generation. Another proportion of the solutions is used
for crossover with other best solutions. The new generation, which is equal in
size to the original population, begins the cycle again. T‘his continues until
some criterion is met at which point the GPNN stops.

Another work introduced by Alison et al [74] which developed a grammatical
evolution neural network (GENN) approach that accounts for the drawbacks of
GPNN. In this study, they show that this new method has high power to detect
gene-gene interactions in simulated data. They also, compare the performance of
GENN to GPNN, a traditional Back-Propagation Neural Network (BPNN) and
a random search algorithm. GENN outperforms both BPNN and the random
search, and performs at least as well as GPNN. This study demonstrates the
utility of using GE to evolve NN in studies of complex human disease.

1.10 CI in Microarray Classification

A DNA microarray (also commonly known as DNA chip or gene array) is a
collection of microscopic DNA spots attached to a solid surface, such as glass,
plastic, or silicon chip, forming an array for the purpose of expression profiling,
monitoring expression levels for thousands of genes simultaneously. Microarrays
provide a powerful basis to monitor the expression of thousands of genes, in order
to identify mechanisms that govern the activation of genes in an organism. Short
DNA patterns (or binding sites near the genes) serve as switches that control
gene expression. Therefore, similar patterns of expression correspond to similar
binding site patterns. A major cause of coexpression of genes is their sharing
of the regulation mechanism (coregulation) at the sequence level. Clustering of
coexpressed genes into biologically meaningful groups helps in inferring the bio-
logical role of an unknown gene that is coexpressed with a known gene(s). Cluster
validation is essential, from both the biological and statistical perspectives, in
order to biologically validate and objectively compare the results generated by
different clustering algorithms.

Microarray classification has a broad variety of biomedical applications. Sup-
port Vector Machines (SVM) have emerged as a powerful and popular classifier
for microarray data. At the same time, there is increasing interest in the devel-
opment of methods for identifying important features in microarray data. Many
of these methods use SVM classifiers either directly in the search for good fea-
tures or indirectly as a measure of dissociating classes of microarray samples.
Peterson and Thaut [85] present study that describes empirical results in model
selection for SVM classification of DNA microarray data. Authors demonstrate
that classifier performance is very sensitive to the SVM’s kernel and model pa-
rameters. They also demonstrate that the optimal model parameters depend on
the cardinality of feature subsets and can influence the evolution of a genetic
search for good feature subsets. Their results suggest that application of SVM
classifiers to microarray data should include careful consideration of the space of
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possible SVM parameters. The results also suggest that feature selection search
and model selection should be conducted jointly rather than independently.

Tasoulis et al. [104] study and compare various computational intelligence
approaches such as neural networks, evolutionary algorithms, and clustering al-
gorithms, then they demonstrate their applicability as well as their weaknesses
and shortcomings to efficient DNA microarray data analysis.

Heterogeneous types of gene expressions may provide a better insight into
the biological role of gene interaction with the environment, disease develop-
ment, and drug effect at the molecular level. Liang and Kelemen [60] proposed a
Time Lagged Recurrent Neural Network with trajectory learning for identifying
and classifying the gene functional patterns from the heterogeneous nonlinear
time series microarray experiments. The proposed procedures identify gene func-
tional patterns from the dynamics of a state-trajectory learned in the heteroge-
neous time series and the gradient information over time. Also, the trajectory
learning with back-propagation through time algorithm can recognize gene ex-
pression patterns varying over time. This may reveal much more information
about the regulatory network underlying gene expressions. The analyzed data
were extracted from spotted DNA microarrays in the budding yeast expression
measurements, produced by Eisen et al. [26]. The gene matrix contained 79 ex-
periments over a variety of heterogeneous experiment conditions. The number
of recognized gene patterns in our study ranged from two to ten and were di-
vided into three cases. Optimal network architectures with different memory
structures were selected based on Akaike and Bayesian information criteria us-
ing two-way factorial design. The optimal model performance was compared to
other popular gene classification algorithms, such as nearest neighbor, support
vector machine, and self-organized maps. The reliability of the performance was
verified with multiple iterated runs.

Efficient and reliable methods that can find a small sample of informative
genes amongst thousands are of great importance. In this area, much research
is devoted to combining advanced search strategies (to find subsets of features),
and classification methods [44]. Juliusdottir et al. [49] investigate a simple evo-
lutionary algorithm/classifier combination on two microarray cancer datasets,
where this combination is applied twice–once for feature selection, and once for
further selection and classification. Their contribution are: (further) demonstra-
tion that a simple EA/classifier combination is capable of good feature discovery
and classification performance with no initial dimensionality reduction; demon-
stration that a simple repeated EA/K-NN approach is capable of competitive or
better performance than methods using more sophisticated preprocessing and
classifier methods; new and challenging results on two public datasets with clear
explanation of experimental setup; review material on the EA/K-NN area; and
specific identification of genes that their work suggests are significant regarding
colon cancer and prostate cancer.

Lin et al. [61] propose a genetic algorithm with silhouette statistics as discrim-
inant function (GASS) for gene selection and pattern recognition. The proposed
method evaluates gene expression patterns for discriminating heterogeneous



1 Computational Intelligence in Solving Bioinformatics Problems 37

cancers. Distance metrics and classification rules have also been analyzed to de-
sign a GASS with high classification accuracy. Moreover, the proposed method
is compared to previously published methods. Various experimental results show
that their method is effective for classifying the NCI60, the GCM and the SR-
BCTs datasets. Moreover, GASS outperforms other existing methods in both
the leave-one-out cross-validations and the independent test for novel data.

Identification of the short DNA sequence motifs that serve as binding targets
for transcription factors is an important challenge in bioinformatics. Unsuper-
vised techniques from the statistical learning theory literature have often been
applied to motif discovery, but effective solutions for large genomic datasets have
yet to be found. Mahonya et al. [65] present three self-organizing neural networks
that have applicability to the motif-finding problem. The core system in this
study is a previously described SOM-based otif-finder named SOMBRERO. The
motif-finder is integrated in this work with a SOM-based method that automati-
cally constructs generalized models for structurally related motifs and initializes
SOMBRERO with relevant biological knowledge. A self-organizing tree method
that displays the relationships between various motifs is also presented in this
work, and it is shown that such a method can act as an effective structural
classifier of novel motifs. The performance of the three self-organizing neural
networks is evaluated and analyzed using various datasets.

1.11 Conclusions, Challenges, and Future Directions

Computational Intelligence (CI) has increasingly gained attention in bioinfor-
matics research and computational biology. With the availability of different
types of CI algorithms, it has become common for researchers to apply the
off-shelf systems to classify and mine their databases. At present, with various
intelligent methods available in the literature, scientists are facing difficulties in
choosing the best method that could be applied to a specific data set. Researchers
need tools, which present the data in a comprehensible fashion, annotated with
context, estimates of accuracy, and explanation. The terms bioinformatics and
computational biology mean about the same. Recently, however, the US National
Institutes of Health (NIH) [126] came up with slightly different definitions, which
for the convenience of the reader are repeated below. Bioinformatics: Research,
development, or application of computational tools and approaches for expand-
ing the use of biological, medical, behavioral, or health data, including those
to acquire, store, organize, archive, analyze, or visualize such data. Computa-
tional biology: The development and application of data-analytical and theoret-
ical methods, mathematical modeling, and computational simulation techniques
to the study of biological, behavioral, and social systems.

The goal of motif finding is to detect novel, over-represented unknown signals
in a set of sequences. Most widely used algorithms for finding motifs obtain a
generative probabilistic representation of the over-represented signals and try to
discover profiles that maximize information content score. The major difficulty
for these algorithms arises from the fact that the best motif corresponds to the
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global maximum of a non-convex continuous function. Algorithms like Expec-
tation Maximization (EM) and Gibbs sampling are very sensitive to the initial
guesses and only converge to the nearest local maximum. A challenge here is to
develop a novel optimization framework that searches the neighborhood regions
of the initial alignments in a systematic manner to explore the neighborhood
profiles. Algorithms like PSO could lead to new and interesting avenues of re-
search.

The problem of cancer classification is another challenge. It has been divided
into two related but separate challenges: class prediction and class discovery [31].
Class prediction refers the assignment of samples to one of several previously de-
fined classes. Class discovery refers to defining a previously unrecognized tumor
subtype(s) in expression data. Both of these tasks are challenging and require
computational assistance. Class prediction via cluster analysis is typically used
to infer the function of novel genes by grouping them with genes of well-known
functionality in gene expression profiling. Genes that show similar activity pat-
terns are often related functionally and are controlled by the same mechanisms
of regulation. A major obstacle to the eventual utility of microarrays is the lack
of efficient methods for cataloging the data into coexpressed groups. A new way
of processing numeric data with large number of attributes versus low number
of objects turns out to be well-suited to the gene expression data. Furthermore,
tumors are not identical–even when they occur in the same organ, and patients
may need different treatments depending on their particular subtype of cancer.
Identification of tumor subgroups is therefore important for diagnosis and de-
sign of medical treatment. Most medical classification systems for tumors are
currently based on clinical observations and the microscopical appearance of the
tumors. These observations are not informative with regard to the molecular
characteristics of the cancer. The genes, whose expression levels are associated
with the tumor subtypes, are largely unknown. A better understanding of the
cancer could be achieved if these genes were identified. Furthermore, the disease
may manifest itself earlier on the molecular level than on a clinical level. Hence,
gene expression data from microarrays may enable prediction of tumor subtype
and outcome at an earlier stage than clinical examination. Thus microarray anal-
ysis may allow earlier detection and treatment of the disease, which again may
increase the survival rate.

Most universities and companies have the same reasons for pursuing biomarker
research: better diagnosis and better treatment for patients. According to Lynn
Rutkowski, co-leader of clinical translational medicine at Wyeth Company (a
global leader in pharmaceuticals, consumer health care products, and animal
health care products), “You need a strategy in place, so you have time to do the
research you need to fill in gaps and get biomarkers you have confidence in. There
are so many technologies emerging. The moment you commit to one, there is an-
other right behind it.” Both companies and researchers have already considered a
new approach of combining imaging technology text mining and biomarkers dis-
covery as a possible solution in future biometric research. For example, Wyeth
Company is investing almost $86 million for biomarker discovery, including ten in
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cardiovascular and metabolic disease, four in inflammation and seven in neuro-
science. This company has developed new markers using the ‘combine’ approach.
In stroke, for example, in addition to imaging technology, Wyeth has used re-
habilitation tools to measure patients’ responses. A robotic instrumentation has
been used for therapy that can also provide a quantitative assessment of motor-
function recovery. Another example includes Alzheimer’s disease (AD). AD has 11
compounds in development. One of these compounds is FK962. The company’s
long-term strategy involves molecular markets, structural and functional brain
imaging, and physiological, behavioral, and associative learning tests.

Another challenge is to combine gene expression research with noninvasive
imaging techniques. Eran Segal [93] and his collaborators hypothesized that the
global gene expression patterns of human cancers may systematically correlate
with their dynamic imaging features [93]. To address the challenges of relating
gene expression to imaging, the researches followed a three step methodology
and created an association map between imaging features on tree-phase contrast
enhanced CT scans and gene expression patterns of 28 human hepatocellular
carcinomas (HCC). First, the researchers defined and quantified 138 units of
distinctiveness named traits present in one or more HCCs. Second, the module
networks algorithm was implemented. The algorithm systematically search for
associations between expression levels of 6,732 well-measured genes determined
by mycroarary analysis and combinations of imaging traits. Third, the statistical
significance of the association map was validated by comparison with permuted
data sets, and by testing the prediction of the association map in an independent
set of tumors.

Paralleling the diversity of genetic and protein activities pathologic human tis-
sues also exhibit diverse radiographic features. It is proven that dynamic imaging
trails in noninvasive computer tomography (CT) systematically correlate with
the global gene expression profiles. For example: the association map of imaging
traits and gene expression revealed that a large fraction of the gene expression
program can be reconstructed from a small number of image trails. The expres-
sion variation in 6,732 genes was captured by 116 gene modules, each of which
was associated with specific combination of imaging trails. For each module, the
presence or absence of combination of imaging traits explained the aggregate ex-
pression level of genes within the module. The combinations of relevant imaging
trials are depicted in decision trees: each split in the tree is specified by variation
of an imaging trait, each terminal leaf in the tree is a cluster of samples that
share a similar expression pattern of module genes. Thus the association map al-
lowed the user to reconstruct the relative expression level of a gene (by mapping
it to a module) in a given HCC sample (by mapping it to a cluster) Across all
116 gene modules capturing 6,732 genes in the presented model, the difference
in the level of expression of member genes from their cognate module averages is
1.36- 1.33 fold. Thus the expression level of individual genes can be reconstructed
from imaging features with an average deviation of about twofold, within the ex-
perimental determination level allowed by microarray analysis. The experiment
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shows that only 8 imaging traits are sufficient to reconstruct the variation of all
116 gene modules [93].

The term cyber-infrastracture has been established by US National Science
Foundation (NSF) to address the needs for new mechanisms of information han-
dling and exchange. Eric Neumann, Director of Clinical Semantics Group at
MIT, has presented the following project as an example of text mining research:
NeuroCommons is a project within Science Commons at MIT. This project is
using text mining to extract neuro-molecular relations from text mining, repre-
senting them as RDF (Resource Description Framework). SWAN (Semantic Web
Applications in Neuromedicine) is an NIH-funded project that allows scientists
to directly annotate knowledge onto findings using RDF. The user interface
consists of a SPARQL–a query page that permits a wide variety of questions
regarding genes, neurological diseases, microanatomy, and publications. Exam-
ples include: “Find all publications with neural dendrites in their description;”
“Show all genes expressed in brain region CA1 involved in signal transduction;”
“Find all papers on Parkinson’s disease that involve gene products localized in
the nucleus;” etc. Results can be formatted as tables. In RDF additional tools
can process the data for enhanced scientific view. Tool such as Google can also
be applied to the output from a query. The future of cyberinfrastarcture for
bioinformatics and biomedical research is becoming a reality: a connected re-
search community more effectively utilizing data and computational resources
from different areas.

Also, intelligent support is essential for managing and interpreting this great
amount of information. One of the well-known constraints specifically related
to microarray data is the large number of genes in comparison with the small
number of available experiments. In this context, the ability of design methods
capable of overcoming current limitations of state-of-the-art algorithms is crucial
to the development of successful applications.

A combination of computational intelligence techniques in application to
bioinformatics and computational biology has become one of the most important
areas of research in intelligent information processing [24]. Neural networks show
their strong ability to solve complex problems for many bioinformatics problems.
From the perspective of specific rough sets approaches that can be applied, explo-
ration into possible applications of hybridizing rough sets with other intelligent
systems like neural networks, genetic algorithms, fuzzy logic, etc. to bioinfor-
matics and computational biology could lead to new and interesting avenues of
research. Moreover, algorithms like PSO or ACO and their variants involve a
large degree of randomness and different runs of the same program may yield
different results; so it is necessary to incorporate problem specific domain knowl-
edge in the Swarm Intelligence tools to reduce randomness and computational
time and current research should progress in this direction as well.

The main purpose of this chapter was to present to the CI and bioinformatics
and computational biology research communities the state of the art in CI applica-
tions to bioinformatics and computational biology, and to inspire further research
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and development on new applications and new concepts in new trend-setting
directions and in exploiting computational intelligence.
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