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1 INTRODUCTION

Current trends in software development tend to favor features such as autonomy,
robustness, flexibility or adaptability. With an increase in the complexity of these
applications comes the need to incorporate organizational abstractions that facilitate
the design, development and maintenance of the applications. THOMAS (MeTHods,
Techniques and Tools for Open Multi-Agent Systems) [4, 1] is a new architecture for
open multi-agent systems composed of a set of related models that are appropriate
for developing systems in highly dynamic environments.

THOMAS applies the same model, computationally speaking, to human orga-
nizations in which both software [15] and human agents adopt diverse roles and
interact to achieve both individual and organizational objective and uses the virtual
organizations paradigm [23]. This paradigm was conceived as a solution to ma-
nage, coordinate and control the performance of the agents [7]. Not only should the
organizations be able to describe the structural composition (i.e., functions, agent
groups, patterns of interaction, or relationships between roles) and the functional
performance (i.e., agent tasks, plans or services), but they should also be able to
describe the performance norms for the agents, the dynamic entrance and exit of the
components, and the equally dynamic formation of the groups of agents. It is for
this reason that the design and development of open MAS is presented as a highly
complex task that creates the need to introduce architectures, similar to THOMAS,
in which it is possible to regulate and establish what the agents can and cannot
do.

The construction sector is one example of an organization that can be modeled
through a multi-agent system. According to recent studies [14], 3% of the work-
day is lost due to the lack of time control systems that can verify the actual time
spent working. Implementing control systems increases productivity since work-
ers can maximize their potential and carry out their tasks more quickly. Incidents
resulting from the incorrect supervision of personnel, in particular product theft,
access of non-authorized individuals, and the inadequate supervision of equipment,
are common problems that increase risks and directly a↵ect the entire process. Te-
lepresence and remote monitoring systems are increasingly common in this type of
scenario [13, 17], as they permit supervisors to observe the behavior of the workers
and the state of the equipment from a distance [19].

This paper presents a multi-agent system that was developed based on the
THOMAS architecture with the goal of improving the supervision of activities car-
ried out by the person in charge of overseeing a construction job. The system mon-
itors the construction personnel and manages the supervision automatically and in
execution time. The self-organizing mechanisms provided by THOMAS allow the
multi-agent system to react to changes and adapt to new situations. This paper is
structured as follows: Section 2 presents the state of the art for open and adaptive
MAS systems; Section 3 focuses on the THOMAS architecture; Section 4 demon-
strates the development of the MAS for a specific study; finally the results and
conclusions obtained are presented.



Self-Organizing Multi-Agent System 1003

2 OPEN AND ADAPTIVE MULTI-AGENT SYSTEMS

MAS is a general software technology rooted in fundamental research issues regard-
ing autonomy, cooperation, group formation, etc. It can be classified as open or
closed, whereby the fundamental di↵erence is that a closed MAS is created with
a fixed structure and objectives, while an open system contains agents that can
enter or exit the system dynamically and that have not necessarily been designed
to share common objectives. This paper will place particular emphasis on open
systems.

2.1 Open Multi-Agent Systems

Open systems [23] exist in dynamic operative environments in which new compo-
nents can be integrated, or existing components continually abandon the system, and
where the actual conditions of operation can change unpredictably. Open systems
are characterized by the heterogeneity of their members, limited reliability, conflict-
ing individual objectives, and a high probability of dissatisfaction with the speci-
fications [12]. Numerous research jobs have appeared over the last years, claiming
to o↵er this type of execution framework: Electronic Institutions [10], RICA-J [20],
Magentis [12], SIMBA [16].

2.2 Self-Adaptive Multi-Agent Systems

The Agentlink Technical Forum on Self-Organisation in MAS [6] defines self-adaptive
systems as systems that change their organization without any centralized, explicit,
implicit, external or internal control. In self-adaptive systems, reorganization oc-
curs as a result of planning by an internal centralized control. According to the
mechanism used, it is possible to distinguish di↵erent proposals for the development
of these systems. It is possible to find research focused on changing structural as-
pects, such as the topology of communication between agents [24]; research focusing
on system performance based on the interaction produced by the environment [18];
research focused on the ability of agents to dynamically modify their behavior ac-
cording to some type of reinforcement [22]; research based on the cooperation among
agents [3]; or proposals based on meta-models and reference architectures for agent
organizations that can be modified and adapted according to the needs of the par-
ticular applications [9].

In order to model open and adaptive multi-agent systems, it is necessary to have
an infrastructure that can utilize the concept of agent technology in the development
process, apply decomposition, abstraction and organization techniques, and keep in
mind each of the previous requirements. The methodological proposal applied in this
research uses the THOMAS architecture to deal with decomposition and abstraction.
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2.3 THOMAS

THOMAS [4, 1] is the name given to an abstract, services-oriented approach archi-
tecture that develops large scale, open multi-agent systems and is primarily oriented
to the design of virtual organizations. It would be possible to define various areas
of research based on the construction of the THOMAS architecture, among which
the most relevant are services-oriented computing, structural organization of com-
munities, and agent platforms. The principal components of THOMAS can be seen
in Figure 1 (adapted from [1]).

OMS

AMS

SF

Network Layer

Platform Kernel (PK)

Org
Org

Agent

Agent Agent
Agent

Agent
Agent

External
Agents

Organization Execution 
Framework

Fig. 1. THOMAS architecture

2.4 Service Facilitator (SF)

This component provides the necessary support for agents and organizations to o↵er
and discover services. The SF primarily provides a place where autonomous entities
can record the description of services as directory entries. In other words, its purpose
is to function like a yellow pages manager so that it can carry out searches and
determine which entities provide any particular service. The SF makes it possible
to locate services according to their profile, or to meet objectives by incorporating
composition and service mechanisms. The SF controls access to the THOMAS
platform by using security techniques and managing authorization. A service is
defined as a tuple type (sID, goal, prof, proc, ground, ont), where sID is the only
existing service identifier; goal is the objective or aim that the service intends to
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achieve, and provides the first level of abstraction for the composition of the service;
prof is the profile of services, which it describes in terms of IOPEs (Inputs, outputs,
Preconditions and E↵ects) and its non-functional attributes.

2.5 Organization Management System (OMS)

The OMS component is primarily responsible for managing the organizations and
their entities. It is responsible for the life cycles of the organizations, including
the specification and administration of its structural components (roles, units and
norms) and its execution components (participating agents and their respective roles;
active units at any given time).

• A role represents a position in the unit within which it is defined. It is associated
with several rules of interaction that are imposed by the unit structure and the
specific position it has within the unit; and with performance rules that specify
its functionality (types of services that it o↵ers and requires), limit its actions
(restrictions, obligations and permission), and determine the consequences of
each action (sanctions and compensations).

• A norm indicates the obligations, permission and restrictions for each role with
respect to registering, requesting and performing services, the composition of
those services and the quality of their results. It defines the restrictions that
cannot be expressed in the preconditions (or postconditions) of a particular
service.

• A unit represents groups of agents and permits recursion (units within other
units). In doing so, it establishes the topological structure of the system. For ex-
ample, it facilitates the representation of hierarchical, matrix or coalition struc-
tures.

In order to manage these components, OMS handles the following lists:

• UnitList : maintains the relationship of existing units, their directly superior
units (SuperUnit), objectives and type.

• RoleList : maintains the relationship of existing roles within each unit.

• NormList : maintains the relationship of the system norms.

• EntityPlayList : maintains the relationship for the units in which each agent
registers as a member, as well as the role that each agent assumes in the unit.

In THOMAS, a “virtual” unit is defined as representing the “world” for the
system in which agents participate by default. OMS creates organizations within
this “virtual” unit by registering units that can in turn be composed of more units.

2.6 Platform Kernel (PK)

The PK component handles the basic services for a multi-agent platform. As a re-
sult, it is in charge of managing the life cycle of the agents present in the di↵erent
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organizations, and allows each agent to have a communication channel (incorporat-
ing di↵erent message transport mechanisms) that facilitates the interaction between
the various entities. Additionally, the PK o↵ers a secure connection and provides
applications with the necessary mechanisms for multi-device interconnectability, if
so required.

The PK services that are required for the THOMAS architecture can be classified
into four groups:

1. Registration: services necessary for adding, modifying or eliminating native plat-
form agents;

2. Discovery : services that provide the functionality for obtaining information
about native platform agents;

3. Management : services for controlling the state of activation for the native plat-
form agents;

4. Communication: services allowing agents to communicate both inside and out-
side the platform.

The system developed in this paper used the GORMAS (Guidelines for Organi-
zation based Multi-Agent Systems) [2]. In order to highlight the advantages of the
architecture and the methodologies that were carefully selected, this paper presents
a case study in which the application of the architecture and methodologies were
modeled in a surveillance environment. The following section details the steps that
were followed in the analysis and the design used for this architecture.

3 CASE OF STUDY: MANAGEMENT AND PLANNING
OF ROUTES SURVEILLANCE

A multi-agent system based on THOMAS was designed to allow scheduling and
distribution of surveillance routes for security guards, and to provide better control
of the activities performed by the sta↵ responsible for overseeing industrial envi-
ronments. The routes are assigned automatically and monitored in real time to
ensure that the security guards complete their work shifts. The system interacts
with users through a set of mobile devices (PDA’s) and wireless communication
technologies (Wi-Fi, GPRS and RFID). In this respect, we constructed an open
system where the system agents calculate the surveillance routes according to the
number of security guards available, the work shifts and the distance to be cover-
ed in the facilities. A supervisor defines the areas that must be supervised, which
can be modified according the particular scenario or changes in the environment.
The system is capable of re-planning the routes automatically taking the number of
available security guards into consideration. It is also possible to track the activi-
ties for each worker (routes completion) over the Internet.The RFID configuration
for the system presented within this paper consists of a mesh of tags distributed
throughout the building. Each tag, named “control point” is related to an area that
must be covered by the security guards. Each security guard carries a PDA with
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a RFID reader to register the completion of each control point. The information is
sent via wireless technology to a central computer where it is processed. The basis
of the developed multi-agent system presented on this paper includes these features,
making it possible to initiate multiple services on demand [21].

3.1 Problem Analysis and Design

Once we were able to examine the elements that constitute our scenario, the mo-
tivation for our system and its objectives, we could begin to define the roles that
would form part of the architecture. These include the following:

• Communicator : in charge of carrying out the tasks that allow a user to interact
with the system. Manages the connections that each user makes.

• Finder : in charge of finding a specific user within the system and establishing
communication.

• GuardManager : in charge of structuring, defining and modeling the profile re-
presented by the guard. The profile is initially established according to the data
obtained for each guard, and should be continually updated according to the
behavior exhibited by each guard during each shift. It is associated to the PDA
for each guard and is in charge of reading the RFID devices at each control
point.

• Planner : can o↵er a service for automatically and dynamically generating sur-
veillance routes for security personnel. It will propose the optimal route for each
guard to follow according to the time, number of available guards and control
points.

• IncidentManager : is responsible for managing and providing a solution for each
kind of incident that might arise during a security round. It also provides a lo-
cation service for the guards, and an alarm system management.

• InformationManager : is responsible for managing all the information generated
by the system (incident, date, hour, control points that are marked or omitted,
etc.)

• DeviceManager : can interact with the interactive elements within the environ-
ment. It deals with devices that use technologies such as RFID, Zigbee, etc.

• PointControlManager : this role makes it possible to use monitoring services at
the control points through which security personnel must pass.

The structural design of the system is also carried out. First the dimensions are
analyzed, and then the most appropriate structural organization [2] is identified. For
our case study, this process is modeled as a congregation (SurveillanceUnit) with
four units, each of which is dedicated to a type of functionality within the scenario.
These four units are:

• GuardUnit, which includes the roles associated to a system user: Communicator,
Finder and GuardManager.
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• ManagingUnit, which includes the roles assigned with global management tasks
for the management system and route planning: IncidentManager, Information-
Manager and PointControl Manager.

• RoutesUnit, which includes roles related to planning routes for the guards: Plan-
ner.

• DeviceUnit, which includes the roles associated with device management: De-
viceManager.

The diagram of the structural view of the organizational model, adapted ac-
cording to the congregation pattern, is shown in Figure 2 (the notation is explained
in [2]).

SurveillanceUnit

Communicator

ParentUnit ParentUnit ParentUnit

GuardUnit ManagingUnit RoutesUnit DeviceUnit

inUnit
inUnit inUnit

Finder GuardManager IncidentManager InformationManager Planner

DeviceManager

ParentUnit

inUnit

PointControlManager

Fig. 2. Diagram of the organization model for the system: structural view

The next step in the analysis and design process consists of detailing the services
for each organization unit.

3.1.1 Services

A diagram representing the internal model is created for each unit (GuardUnit,
ManagingUnit, RoutesUnit, DeviceUnit). These models identify the services asso-
ciated with each unit. A modeling of the functional view of the units is carried
out, which allows us to identify the specific services for each domain. Then we
detail as precisely as possible how each of the organizational services performs, how
they interact within the environment, what interactions are established between
the system entities, and how they handle the aspects related to open systems. For
example, the basic service provided by the GuardUnit is manageConnection, which
is provided by the di↵erent types of agents that assume the Communicator role. As
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shown in Table 1, the functionality o↵ered by this service makes it possible for the
clients to manage their connection to the system.

Service Specification

Name: manageConnection
Description: Manage Client Connection

Supplied by: SF
Required by:

ClientRole: GuardManager
ProviderRole:Comunnicator

Input Parameters

Name Description Mand. Type Value Default
Range

requestTime Connection time Yes date
connectionData Connection Data Yes string

operation Kind Conecction Yes string
Output Parameters

Name Description Mand. Type Value Default
Range

connection Connection Yes connection
established

Precondition

–
Postcondition

–

Table 1. manageConnection service in GuardUnit

3.1.2 Norms

Upon completing the modeling of the functional views of the units, which allows
us to identify the services particular to each domain and to detail the performance
of the organizational services as precisely as possible, the next step is to define
the norms in order to establish the control and management of the services. Each
possible type of performance of the system is controlled by the norms defined by the
following syntax:

<norm>::=<deontic_concept>(<action>[<temporal_situation>]

[IF <if_condition>]) [SANCTION(<state>)] [REWARD(<state>)]

where

<deontic_concept>::= OBLIGED | FORBIDDEN | PERMITTED

and the action will be a dialogue action (send message) or an action to request,
provide or register a service,
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(REQUEST | SERVE | REGISTER <service>)

With <if condition> it will be possible to indicate the results of the functions or
services.

A set of norms was defined in our system in order to control the performance
within each of the units. This way, for example, an agent acting as Communicator
within the GuardUnit is required to register manageConnection services. If it does
not abide by this norm, it will be sanctioned and banished from the unit. The
sanction is logical since if there is no connection established within a set amount of
time, none of the other system tasks can be carried out:

OBLIGED Communicator

REGISTER manageConenction(?requestTime, ?connexionData, ?operacion)

BEFORE deadline

SANCTION(OBLIGED OMS SERVE Expulse (?agentID Communicator GuardUnit))

3.1.3 Example of Self-Organization with THOMAS

One of the primary capabilities of the multi-agent system proposed in this paper
is the capability of self-organization. We have developed a planning service that
has been integrated within the multi-agent system developed [21, 5] and modeled
through THOMAS. It involves a self-adapting mechanism that facilitates the au-
tomatic assignment of tasks within the multi-agent system. To accomplish this,
a case-based reasoning paradigm was used so that a new problem can be resolved
based on similar past experiences [5, 21]. The following section demonstrates the
sequence of tasks that are executed within the system when a planning service is
requested, and how THOMAS can generate the system configuration and ensure the
planning takes place. The system evolves by replanning the routes that the guards
should follow.

The first step is to define the structural components of the organization, i.e.,
the units that will be used (which are initially empty), the system roles and the
norms. The requirements for the indicated services will be registered in the SF,
thus establishing their respective profile (structure for the entrances/exists, pre-
conditions/postconditions that should be met). As a result, a congregation type
SurveillanceUnit is created, which represents the organization whose objective it is
to control the environment under construction that will be monitored. There are
four basic internal units, GuardUnit, ManagingUnit, RoutesUnit and DeviceUnit,
each one dedicated to the functionalities that have been previously noted. The
list of system units will remain registerd in the UnitList of the OMS, as shown in
Figure 3.

The roles for each unit are defined, and each of their attributes indicated (visi-
bility, position, and heritage), and the name of the unit should also be mentioned.
This information will be registered in the OMS RoleList. The SF will list the ser-
vices that are needed for the functionality of the system. The basic services are
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AMS

Network Layer

Platform Kernel (PK)

GuardUnit ManagingUnit

External
Agents

RoutesUnit DeviceUnitSurveillanceUnit

SF

Entity|Action|Service|ClientRole|ProvRole|Profile

GuardUnit|Requires|manageConnection|GuardManager|Communicator|Guard
SP

GuardUnit: manageConnection, ConsultarUsuarios, ActualizarUsuarios, 
ObtenerConexión, FinalizarConexión, EstadoUsuario, BusquedaUsuario

ManagingUnit: ConsultarIncidencia, ActualizarIncidencia, InformarIncidencia, 
IncidentesPendientes, EstadoIncidencia, EnviarMensaje, GenerarPerfil, 
ConsultarPerfil, ActualizarPerfil, EstadoMSG, ActualizarEstadoMSG, 
ValidarIdentificacion, RecuperarUsuariosPerfil, SolicitarInformacion, 
AceptarInformacionn, FinalizarInformacion, ConsultarInformacion, 
BusquedaInformacion, ActualizarInformacion, InformarInformacion, 
ValorarInformacion

RoutesUnit: Planificar, Replanificar, ValidarRuta, ValorarRuta, 
RecuperarListaPuntosControl, FinalizarHito, ConsultarPuntosControl, 
EliminarPuntosControl, AnadirPuntosControl, EliminarPuntosControl

DeviceUnit: ConsultarSensores, ConsultarEntorno, ActuarEntorno, Localizar, 
EstadoLocalizacion, ActualizarEstadoLocalizacion

G2

G1

OMS UnitList RoleListNormList EntityPlayList

UnitName|SuperUnit|Goal|Type

Virtual (Word)|-|-|Flat

SurveillanceUnit|Virtual|ControlSce
nario|Congregation

GuardUnit|SurveillanceUnit|Control
Guard|Flat

ManagingUnit|SurveillanceUnit|Con
trolSurveillance|Flat
RoutesUnit|SurveillanceUnit|Contro
lRoutes|Flat

DeviceUnit|SurveillanceUnit|Contro
lDevices|Flat

OBLIGED Communicator REGISTER 
manageConenction(?requestTime, 
?connexionData, ?operacion) BEFORE 
deadline SANCTION (OBLIGED OMS SERVE 
Expulse (?agentID Communicator 
GuardUnit))

OBLIGED ...

UnitName|Role Name|Attributes|is_a

GuardUnit|Comunnicator|accesible, 
position=member|Client,Provider

GuardUnit|Finder|accesible, 
position=member|Client

GuardManager, Planner, IncidentManager, 
InformationManager, 
PointControlManager, DeviceManager...

Fig. 3. Architecture of the initial system with an empty framework

those which are essential (as defined by the norms) when the units are being cre-
ated. As a result, the EntityPlayList for the OMS will still be empty. The agents
have not yet begun to “play” within the system. At this point, external agents can
request the current list of services and decide whether to enter and form part of the
organization, and with which type of role. In the following example, two guards will
use their mobile device to send a request in order to find the most optimal route
for them to follow so they can perform their security rounds according to existing
conditions (time, control points, etc.).

• Agents G1 and G2 : represent the security guards that wish to obtain their
route; they will enter the system.
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• Co, Pl and Pc: agents that plan to assume the Communicator, Planner and
PointControlManager roles respectively, and can o↵er and/or request services
from others with whom they are associated according to the SF.

All of these agents are first initiated on the THOMAS platform and associated
to the virtual “world” organization. As such, the OMS will play the “member” role
in the “world” organization. Asking the SF about which services exist in the system
will generate the following answer:

GuardUnit Requires manageConnection ClientRole=GuardManager;

ProvRole=Communicator;

The GuardUnit, ManagingUnit, RoutesUnit and DeviceUnit will already be vi-
sible in the “world” with a series of available services for the agents that wish to
perform these tasks according to the roles they assume. ManagingUnit, RoutesUnit
and DeviceUnit will return the services that are necessary for planning. The profiles
function will determine that Co is also interested in assuming the DeviceManager
role since in this case it wants to interact with elements within the environment. Co
will use this role to act as intermediary to process the signals that come from the
user’s devices and make them comprehensible within the system. It will allow the
order requested by a user through a device to be understood and executed by the
specific device that is the object of the order:

AdquireRole(DeviceUnit, DeviceManager)

It will now be registered as a member of DeviceUnit in the role of DeviceManager.
This role will require the agent to register the Locate service and associate the
process and grounding that it considers most suitable. If this is not accomplished
within a determined amount of time, it will be banished. The norm specifically is:

OBLIGED DeviceManager REGISTER Localizar(?ruta) BEFORE deadline

SANCTION (OBLIGED OMS SERVE

Expulse (?agentID DeviceManager DeviceUnit))

The agent will be informed of this norm upon performing the AcquireRole, so
that it can reason out the norm if it is a norm agent (or ignore it otherwise). To keep
other external agents from assuming the DeviceManager role, the agent will register
a new incompatibility norm within the system. This norm makes it impossible for
other agents to assume the same role.

RegisterNorm("norma1", "FORBIDDEN Member REQUEST

AcquireRole Message(CONTENT(role ’DeviceManager))")

The Entity Play List and the units will end up as shown in the Figure 4. At this
point, the participating agents within THOMAS have requested and acquired the
services and roles necessary to carry out the planning needed for each of the security
guards. Once the agents are in the system, the organization can evolve according
to the plans that are carried out.
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AMS

Network Layer

Platform Kernel (PK)

GuardUnit ManagingUnit

RoutesUnit DeviceUnit

SurveillanceUnit

SF

Entity|Action|Service|ClientRole|ProvRole|Profile

GuardUnit|Requires|manageConnection|GuardManager|Communicator|GuardSP

GuardUnit: manageConnection, ConsultarUsuarios, ActualizarUsuarios, ObtenerConexión, 
FinalizarConexión, EstadoUsuario, BusquedaUsuario

ManagingUnit: ConsultarIncidencia, ActualizarIncidencia, InformarIncidencia, 
IncidentesPendientes, EstadoIncidencia, EnviarMensaje, GenerarPerfil, ConsultarPerfil, 
ActualizarPerfil, EstadoMSG, ActualizarEstadoMSG, ValidarIdentificacion, 
RecuperarUsuariosPerfil, SolicitarInformacion, AceptarInformacionn, FinalizarInformacion, 
ConsultarInformacion, BusquedaInformacion, ActualizarInformacion, InformarInformacion, 
ValorarInformacion

RoutesUnit: Planificar, Replanificar, ValidarRuta, ValorarRuta, RecuperarListaPuntosControl, 
FinalizarHito, ConsultarPuntosControl, EliminarPuntosControl, AnadirPuntosControl, 
EliminarPuntosControl

DeviceUnit: ConsultarSensores, ConsultarEntorno, ActuarEntorno, Localizar, EstadoLocalizacion, 
ActualizarEstadoLocalizacion

OMS UnitList RoleListNormList EntityPlayList

UnitName|SuperUnit|Goal|Type

Virtual (Word)|-|-|Flat

SurveillanceUnit|Virtual|ControlSce
nario|Congregation

GuardUnit|SurveillanceUnit|Control
Guard|Flat

ManagingUnit|SurveillanceUnit|Con
trolSurveillance|Flat
RoutesUnit|SurveillanceUnit|Contro
lRoutes|Flat

DeviceUnit|SurveillanceUnit|Contro
lDevices|Flat

OBLIGED Communicator REGISTER 
manageConenction(?requestTime, 
?connexionData, ?operacion) BEFORE 
deadline SANCTION (OBLIGED OMS SERVE 
Expulse (?agentID Communicator 
GuardUnit))

OBLIGED DeviceManager REGISTER 
Localizar(?ruta) BEFORE deadline 
SANCTION (OBLIGED OMS SERVE Expulse 
(?agentID DeviceManager DeviceUnit))

UnitName|Role Name|Attributes|is_a

GuardUnit|Comunnicator|accesible, 
position=member|Client,Provider

GuardUnit|Finder|accesible, 
position=member|Client

GuardManager, Planner, IncidentManager, 
InformationManager, 
PointControlManager, DeviceManager...

RegisterNorm(“norma1”, “FORBIDDEN  
Member REQUEST AcquireRole 
Message(CONTENT(role 
‘DeviceManager))”)

Entity|Unit|Rol

Co|GuardUnit|Communicator

Co|DeviceUnit|DeviceManager

Pl|RoutesUnit|Planner

G1|GuardUnit|GuardManager

G2|GuardUnit|GuardManager

Pc|ManagingUnit|PointControlManager

CoPl

Pc
Co

G1

G2

Fig. 4. System architecture with execution framework

The steps that must be followed for planning a route for one of the agents, G1,
can be summarized as follows:

• Once inside the THOMAS platform, G1 obtains a connection using the obtain-
Connection service provided by the Communicator role that has acquired the
Co agent already immersed within the system.

• G1 locates the user’s mobile device within the system acting as a client through
the Locate service provided by Co.

• Likewise, G1 generates its profile using the GenerateProfile service and is used
by the PointControlManager PC agent to know the data for the guard.

• G1 uses the Planning service to request the Planner P1 agent to recommend
a route based on the restrictions within its own user profile.
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• At the same time P1 acts on Pc to use the RecoverListPoints service and obtain
the control required to generate the route.

• P1 will provide the route to G1 which in turn will validate the route using the
ValidateRoute service obtained from P1.

• G1 will update the profile data with the data obtained from the system using
the UpdateProfile and UpdateMSGState services.

At this time the path to follow is shown on the guard’s device.

4 RESULTS AND CONCLUSSIONS

An important issue in the development of real open multi-agent systems is to pro-
vide developers with methods, tools and appropriate architectures which support
all of the requirements for these kinds of systems. Traditional multi-agent system
development methodologies are not suitable for developing open multi-agent sys-
tems because they assume a fixed number of agents that are specified during the
system analysis phase. The proposed methodology presented in this paper manages
these techniques by using the THOMAS architecture for a multi-agent system in
a dynamic environment.

The THOMAS architecture can be compared with other options currently avail-
able that can create organizational models, platforms and agent architectures. In
our case, the use of THOMAS allowed us to dynamically model and develop concepts
for a route planning system, something we could not have been able to achieve with
other platforms comparable to THOMAS such as [11, 20, 8, 9], as mentioned in this
paper. Specifically, our proposal allowed us to directly model the organization for
a security environment according to a previous basic analysis, to define agent roles,
functionalities and restrictions in a dynamic and open manner, and to add service
management capabilities (discovery, directory, etc.) within the platform beforehand.

Several tests have been comparing the overall performance of the system with
respect to its previous version, the latter having used THOMAS. The tests con-
sisted of a set of requests delivered to the planning mechanism of services which in
turn had to generate paths for each security guard. The system presented in this
paper was implemented and tested in controlled environments. With each route
generator simulation, we noted that the system improved significantly, both the ac-
tual case study as well as the architecture agents at the organizational and resource
level. Several data have been obtained from these tests, notably the average time
to accomplish the plans, the number of crashed agents, and the number of crashed
services.

Figure 5 illustrates the improvement that was achieved with regards to the
system response times, due primarily to the structural change. In other words,
the system went from having a mainly centralized internal composition in which
a coordinating agent was in charge of directing the primary tasks for generating
surveillance routes, to having an organizational and dynamic agent-based structure
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Fig. 5. Time needed for both systems to generate paths for a group of security guards

in which each specific role or service can be acquired by independent agents. As
a result it is possible to distribute computationally complex tasks such as planning
into services, thus reducing the response time for changes in the environment that
provoke a replanning of surveillance routes. This reduction was shown to optimize
the workday for the security guards, increasing their productivity by 7% by dyna-
mically assigning the control points, which minimized the area to cover during the
surveillance routes.

In addition to having a non-centralized organization, we were able to achieve
an improvement in the robustness and scalability of the system. Figure 6 illustrates
the results obtained with regards to the number of agents with errors in the sys-
tem. As shown, the rate of agents with errors is reduced by an average of 21%.
This reduction is essentially due to the distribution of computationally complex
system tasks. Additionally, the agents with errors in the new system can be in-
stancized again and assume their role within the organization once more, because of
the self-organization feature provided by THOMAS. These data demonstrate that
this approach provides a higher ability to recover from errors and a good ability for
self-organizing.

We can conclude that THOMAS was able to provide us with the necessary level
of abstraction for developing our system, and the set of tools for facilitating its
development. In THOMAS architecture, agents can o↵er and invoke services in
a transparent way from other agents, virtual organizations or entities. Additionally,
external entities can interact with agents through the use of the services o↵ered.
A case-study example was employed to illustrate not only the usage of THOMAS
components and services, but also the dynamics of the applications to be developed
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with such architecture. Examples of THOMAS service calls were shown through
the use of several scenarios, along with the evolution of di↵erent dynamic virtual
organizations.
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1018 S. Rodŕıguez, D. I. Tapia, J. F. de Paz, J. Bajo, J.M. Corchado, A. Abraham

[22] Weyns, D.—Schelfthout, K.—Holvoet, T.—Glorieux, O.: Role Based
Model for Adaptive Agents. Proceedings of 4th Symposium on Adaptive Agents and
Multiagent Systems – AISB ’04, Leeds, UK 2004, pp. 75–86.

[23] Zambonelli, F.—Jennings, N.—Wooldridge, M.: Developing Multiagent Sys-
tems: The GAIA Methodology. ACM Transactions on Software Engineering and
Methodology, Vol. 12, 2003, pp. 317–370.

[24] Zambonelli, F.—Gleizes, M.P.—Mamei, M.—Tolksdorf, R.: Spray Com-
puters: Frontiers of Self-Organisation for Pervasive Computing. Proceeding of 1st

International Conference on Autonomic Computing, Modena, Italy, June 2003,
pp. 97–402.

Sara pursued her studies of Ph.D. in this Univer-
sity. She obtained her Technical Engineering in Systems Com-
puter Sciences degree in 2004, and Engineering in Computer
Sciences degree in 2007 from the University of Salamanca. She
is Assistant Professor at the University of Salamanca and re-
searcher in the BISITE research group (http://bisite.usal.
es). She has participated as a co-author of papers published in
recognized international conferences and symposiums.

Dante I. received his Ph.D. in Computer Science from
the University of Salamanca (Spain) in 2009. At present, he is
a researcher aint the BISITE Research Group of the University
of Salamanca (Spain). He obtained an Engineering in Computer
Sciences degree in 2001 and an M. Sc. in Telematics from the
University of Colima (Mexico) in 2004. He has been involved in
the development of automated systems in the Faculty of Telema-
tics at the University of Colima and deeply collaborating with
the Government of the State, where he obtained a scholarship to
complete his academic formation. He has also been a co-author

of papers published in recognized workshops and symposiums.

Juan Francisco received his Ph.D. in Computer Scien-
ce from the University of Salamanca (Spain) in 2010. He is As-
sistant Professor at the University of Salamanca and researcher
in the BISITE research group (http://bisite.usal.es). He
obtained a Technical Engineering in Systems Computer Sciences
degree in 2003, Engineering in Computer Sciences degree in 2005
from the University of Salamanca and Statistic degree in 2007
from the same University. He has been co-author of published
papers in several journals, workshops and symposiums.



Self-Organizing Multi-Agent System 1019

Javier received his Ph.D. in Computer Science and Ar-
tificial Intelligence from the University of Salamanca in 2007.
At present, he is Director of the Data Processing Center and
Associate Professor at the Pontifical University of Salamanca
(Spain) and researcher in the BISITE research group (http:
//bisite.usal.es) at the University of Salamanca (Spain). He
obtained his Information Technology degree from the Univer-
sity of Valladolid (Spain) in 2001 and Engineering in Computer
Sciences degree from the Pontifical University of Salamanca in
2003. He has been a member of the organizing and scientific

committee of several international symposiums such as CAEPIA, IDEAL, HAIS, etc. and
is co-author of more than 170 papers published in recognized journals, workshops and
symposiums.

Juan M. received his Ph.D. in Computer Science
from the University of Salamanca in 1998 and Ph.D. in Artifi-
cial Intelligence from the University of Paisley, Glasgow (UK) in
2000. At present, he is Dean at the Faculty of Computer Scien-
ces, Associate Professor, Director of the Intelligent Information
System Group (http://bisite.usal.es) and Director of the
MSc programs in Computer Science at the University of Sala-
manca (Spain). Previously, he was sub-director of the Computer
Science School at the University of Vigo (Spain, 1999–2000) and
a researcher at the University of Paisley (UK, 1995–1998). He

has been a research collaborator with the Plymouth Marine Laboratory (UK) since 1993.
He has led several artificial intelligence research projects sponsored by Spanish and Euro-
pean public and private sector institutions and has supervised seven Ph.D. students. He
is the co-author of over 230 books, book chapters, journal papers, technical reports, etc.

Ajith received the Ph.D. degree in Computer Scien-
ce from Monash University, Melbourne, Australia. He is cur-
rently the Director of Machine Intelligence Research Labs (MIR
Labs), Scientific Network for Innovation and Research Excel-
lence, USA, which has members from more than 85 countries.
He serves/has served the editorial board of over 50 international
journals and has also guest edited 40 special issues on various
topics. He has authored/co-authored more than 800 publica-
tions, and some of the works have also won best paper awards at
international conferences. His research and development expe-

rience includes more than 22 years in the industry and academia. He works in a multidis-
ciplinary environment involving machine intelligence, network security, various aspects of
networks, e-commerce, Web intelligence, Web services, computational grids, data mining,
and their applications to various real-world problems. He has given more than 50 plenary
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