
 

  
Abstract— Chemotaxis can be defined as an innate 

behavioural response by an organism to a directional stimulus, 
in which bacteria, and other single-cell or multicellular 
organisms direct their movements according to certain 
chemicals in their environment. This is important for bacteria to 
find food (e.g., glucose) by swimming towards the highest 
concentration of food molecules, or to flee from poisons. Based 
on self-organized computational approaches and similar 
stigmergic concepts we derive a novel swarm intelligent 
algorithm. What strikes from these observations is that both 
eusocial insects as ant colonies and bacteria have similar natural 
mechanisms based on stigmergy in order to emerge coherent 
and sophisticated patterns of global collective behaviour. 
Keeping in mind the above characteristics we will present a 
simple model to tackle the collective adaptation of a social 
swarm based on real ant colony behaviors (SSA algorithm) for 
tracking extrema in dynamic environments and highly 
multimodal complex functions described in the well-know 
DeJong test suite. Then, for the purpose of comparison, a recent 
model of artificial bacterial foraging (BFOA algorithm) based 
on similar stigmergic features is described and analyzed. Final 
results indicate that the SSA collective intelligence is able to 
cope and quickly adapt to unforeseen situations even when over 
the same cooperative foraging period, the community is 
requested to deal with two different and contradictory purposes, 
while outperforming BFOA in adaptive speed. Results indicate 
that the present approach deals well in severe Dynamic 
Optimization problems. 
 

Index Terms—Swarm Intelligence and Perception, Social 
Cognitive Maps, Social Foraging, Self-Organization, Distributed 
Search and Optimization in Dynamic Environments.  
 

I. INTRODUCTION 

WARM Intelligence (SI) is the property of a system 
whereby the collective behaviors of (unsophisticated) 

entities interacting locally with their environment cause 
coherent functional global patterns to emerge. SI provides a 
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basis with which it is possible to explore collective (or 
distributed) problem solving without centralized control or 
the provision of a global model (Stan Franklin, Coordination 
without Communication, talk at Memphis Univ., USA, 1996). 
The well-know bio-inspired computational paradigms know 
as ACO (Ant Colony Optimization algorithm [5]) based on 
trail formation via pheromone deposition / evaporation, and 
PSO (Particle Swarm Optimization [14]) are just two among 
many successful examples. Yet, and in what specifically 
relates to the biomimicry of these and other computational 
models, much more can be of useful employ, namely the 
social foraging behavior theories of many species, which can 
provide us with consistent hints to algorithmic approaches for 
the construction of social cognitive maps, self-organization 
[1,6], coherent swarm perception and intelligent distributed 
search, with direct applications in a high variety of social 
sciences and engineering fields [25 30]. In the present 
work, we will address the collective adaptation of a social 
community to a cultural (environmental, contextual) or 
informational dynamical landscape, represented here – for the 
purpose of different experiments – by several 3D 
mathematical functions that change over time. Our precise 
and final goal will be to keep track of extrema on those 
environments. For instance, typical applications of 
evolutionary optimization in static environments involve the 
approximation of the extrema of functions. On the contrary, 
for dynamic environments, the interest is not to locate the 
extrema but to follow it as closely as possible [12].   
Flocks of migrating birds and schools of fish are familiar 
examples of spatial self-organized patterns formed by living 
organisms through social foraging. Such aggregation patterns 
are observed not only in colonies of organisms as simple as 
single-cell bacteria, as interesting as social insects like ants 
and termites as well as in colonies of multi-cellular 
vertebrates as complex as birds and fish but also in human 
societies [8]. Wasps, bees, ants and termites all make effective 
use of their environment and resources by displaying 
collective “swarm” intelligence. For example, termite 
colonies build nests with a complexity far beyond the 
comprehension of the individual termite, while ant colonies 
dynamically allocate labor to various vital tasks such as 
foraging or defense without any central decision-making 
ability [5]. Slime mould is another perfect example. These are 
very simple cellular organisms with limited motile and 
sensory capabilities, but in times of food shortage they 
aggregate to form a mobile slug capable of transporting the 
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assembled individuals to a new feeding area. Should food 
shortage persist, they then form into a fruiting body that 
disperses their spores using the wind, thus ensuring the 
survival of the colony [18].  
New research suggests that microbial life can be even richer: 
highly social, intricately networked, and teeming with 
interactions. Bassler [2] and other researchers have 
determined that bacteria communicate using molecules 
comparable to pheromones, as ant colonies so often do. By 
tapping into this cell-to-cell network, microbes are able to 
collectively track changes in their environment, conspire with 
their own species, build mutually beneficial alliances with 
other types of bacteria, gain advantages over competitors, and 
communicate with their hosts - the sort of collective 
strategizing typically ascribed to bees, ants, and people, not to 
bacteria. Eshel Ben-Jacob [4] indicate that bacteria have 
developed intricate communication capabilities (e.g. quorum-
sensing, chemotactic signalling and plasmid exchange) to 
cooperatively self-organize into highly structured colonies 
with elevated environmental adaptability, proposing that they 
maintain linguistic communication. Meaning-based 
communication permits colonial identity, intentional 
behaviour (e.g. pheromone-based courtship for mating), 
purposeful alteration of colony structure (e.g. formation of 
fruiting bodies), decision-making (e.g. to sporulate) and the 
recognition and identification of other colonies – features we 
might begin to associate with a bacterial social intelligence. 
Such a social intelligence, should it exist, would require 
going beyond communication to encompass unknown 
additional intracellular processes to generate inheritable 
colonial memory and commonly shared genomic context. 
Moreover, Eshel [3] argues that colonies of bacteria are able 
to communicate and even alter their genetic makeup in 
response to environmental challenges, asserting that the lowly 
bacteria colony is capable of computing better than the best 
computers of our time, and attributes to them properties of 
creativity, intelligence, and even self-awareness. These self-
organizing distributed capabilities were also found in plants. 
Peak and co-workers [23] point out that plants may regulate 
their uptake and loss of gases by distributed computation – 
using information processing that involves communication 
between many interacting units (their stomata). As described, 
leaves have openings called stomata that open wide to let CO2 
in, but close up to prevent precious water vapour from 
escaping. Plants attempt to regulate their stomata to take in as 
much CO2 as possible while losing the least amount of water. 
But they are limited in how well they can do this: leaves are 
often divided into patches where the stomata are either open 
or closed, which reduces the efficiency of CO2 uptake. By 
studying the distributions of these patches of open and closed 
stomata in leaves of the cocklebur plant, Peak et al. [23] 
found specific patterns reminiscent of distributed computing. 
Patches of open or closed stomata sometimes move around a 
leaf at constant speed, for example. What’s striking is that it 
is the same form of mechanism that is widely thought to 
regulate how ants forage. The signals that each ant sends out 
to other ants, by laying down chemical trails of pheromone, 

enable the ant community as a whole to find the most 
abundant food sources. Wilson [32] showed that ants emit 
specific pheromones and identified the chemicals, the glands 
that emitted them and even the fixed action responses to each 
of the various pheromones. He found that pheromones 
comprise a medium for communication among the ants, 
allowing fixed action collaboration, the result of which is a 
group behaviour that is adaptive where the individual’s 
behaviours are not.  

II. SELF-ORGANIZATION AND STIGMERGY 

Many structures built by social insects are the outcome of a 
process of self-organization [27,28], in which the repeated 
actions of the insects in the colony interact over time with the 
changing physical environment to produce a characteristic 
end state [11]. A major mediating factor is stigmergy [31], 
the elicitation of specific environment-changing behaviors by 
the sensory effects of local environment changes produced by 
previous and past behavior of the whole community. 
Stigmergy is a class of mechanisms that mediate animal-
animal interactions through artifacts or via indirect 
communication, providing a kind of environmental synergy, 
information gathered from work in progress, a distributed 
incremental learning and memory among the society. In fact, 
the work surface is not only where the constituent units meet 
each other and interact, as it is precisely where a dynamical 
cognitive map could be formed, allowing for the embodiment 
of adaptive memory, cooperative learning and perception 
[25 30]. Constituent units not only learn from the 
environment as they can change it over time. Its introduction 
in 1959 by Pierre-Paul Grassé1 made it possible to explain 
what had been until then considered paradoxical 
observations: In an insect society individuals work as if they 
were alone while their collective activities appear to be 
coordinated. The stimulation of the workers by the very 
performances they have achieved is a significant one inducing 
accurate and adaptable response. The phrasing of his 
introduction of the term is worth noting (translated to English 
in [11]): 
 

The coordination of tasks and the regulation of constructions 
do not depend directly on the workers, but on the 
constructions themselves. The worker does not direct his 
work, but is guided by it. It is to this special form of 
stimulation that we give the name Stigmergy (stigma - wound 
from a pointed object, and ergon - work, product of labor = 
stimulating product of labor). 

 

Keeping in mind the above characteristics (section I and II) 
we will present a simple model to tackle the collective 
adaptation of a social swarm based on real ant colony 
behaviors (Swarm Search Algorithm SSA - section III / results 
on section IV). Then, and for the purpose of comparison, a 

 
1 Grassé, P.P.: La reconstruction du nid et les coordinations inter-

individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la 
stigmergie : Essai d’interpretation des termites constructeurs. Insect Sociaux 
(1959), 6, 41-83.   
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recent model of artificial bacterial foraging [22,17] (Bacterial 
Foraging Optimization Algorithm - BFOA) based on similar 
stigmergic features is described and analyzed (section V). 
Final results indicate that the SSA collective intelligence is 
able to cope and quickly adapt to unforeseen situations even 
when over the same cooperative foraging period, the 
community is requested to deal with two different and 
contradictory purposes, outperforming BFOA. 

 

F0a - 3D view F0a - 2D view F0b - 3D view F0b - 2D view 

F1 - 3D view F1 - 2D view F2 - 3D view F2 - 2D view 

F3 - 3D view F3 - 2D view F4 - 3D view F4 - 2D view 

F6 - 2D view F6 - 2D view 

 
Fig. 1. Three-dimensional views (3D) 
and respective landscapes views (2D) 
of several test functions used in our 
analysis [38]. White pixels 
correspond to high peaks, while 
darker ones represent deep valleys 
(F0-F4) or holes (F6). Check table II 
in section 4. 
 

t = 0 t = 0 t = 1000 t = 1000 

t = 50 t = 50 

t = 100 t = 100 

t = 500 t = 500 

 
Fig.2. maxF0a. Pheromone 
distribution (Social Cognitive Maps) 
for t=0, 50, 100, 500 and 1000 time 
steps, of 3000 ants exploring function 
F0a on a 100 x 100 toroidal grid (1st 
and 3rd column: darker pixels 
correspond to higher concentrations). 
Columns 2 and 4 correspond to the 
geographical place where agents are 
situated (each black pixel is an ant). 
At t=100, the highest peak is already 
surrounded by agents while 
convergence proceeds. Processing 
time equals to 54 s (1200 Mhz Intel 
Processor). 

III. A SWARM MODEL FOR FORAGING IN DYNAMIC 

ENVIRONMENTS 

As mentioned above, the distribution of the pheromone 
represents the memory of the recent history of the swarm (his 
social cognitive map), and in a sense it contains information 
which the individual ants are unable to hold or transmit [29]. 
There is no direct communication between the organisms but 
a type of indirect communication through the pheromonal 
field.  

In fact, ants are not allowed to have any local memory and 
the individual’s spatial knowledge is restricted to local 
information about the whole colony pheromone density. In 
order to design this behaviour, one simple model was adopted 
[7], and extended due to specific constraints of the present 
proposal, in order to deal with 3D dynamic environments. As 
described by Chialvo and Millonas, the state of an individual 
ant can be expressed by its position r, and orientation θ.  
Since the response at a given time is assumed to be 
independent of the previous history of the individual, it is 
sufficient to specify a transition probability from one place 
and orientation (r,θ) to the next (r*,θ*) an instant later. In 
previous works by Millonas [21,20], transition rules were 
derived and generalized from noisy response functions, which 
in turn were found to reproduce a number of experimental 
results with real ants. The response function can effectively be 
translated into a two-parameter transition rule between the 
cells by use of a pheromone weighting function (Eq.1): 
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TABLE I 
HIGH-LEVEL DESCRIPTION OF THE SWARM SEARCH ALGORITHM PROPOSED 

/* Initialization */ 
For all agents do 
   Place agent at randomly selected site 
End For 
/* Main loop */ 
For t = 1 to tmax do 
   For all agents do 
      /* According to Eqs. 1 and 2 (section 3) */ 
Compute W( ) and Pik 
Move to a selected neighboring site not 
occupied by other agent 
/* According to Eq. 3 (section 3) */ 
Increase pheromone at site r:  
                       Pr= Pr+[η+p( [r]/ max)] 
   End For 
   Evaporate pheromone by K, at all grid sites 
End For 
Print location of agents 
Print pheromone distribution at all sites 
/* Values of parameters used in experiments */ 
k = 0.015, η = 0.07, β=3.5, =0.2, 
p = 1.9, tmax = 500, 600, 1000 or 1150 steps. 
/* Useful references */ 
Check [25], [27], [7], [21] and [20]. 
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t = 0 t = 0 t = 50 t = 50 

t = 500 t = 500 t = 150 t = 150 

 
t = 1000 t = 1000 t = 250 t = 250 

t = 1010 t = 1010 t = 300 t = 300 

 
t = 1080 t = 1080 t = 350 t = 350 

 
t = 1100 t = 1100 t = 400 t = 400 

t = 1150 t = 1150 t = 500 t = 500 
Fig. 3. maxF0a => maxF0b. Social 
evolution from maximizing function 
F0a to maximizing function F0b. In 
the first 1000 time steps the ant 
colony explores function F0a, while 
suddenly at t=1001, function F0b is 
used as the new habitat. Pheromone 
distribution (Social Cognitive Maps) 
for t = 0, 500, 1000, 1010, 1050, 
1080, 1100 and 1150 time steps, of 
3000 ants exploring function F0a and 
F0b on a 100 x 100 toroidal grid are 
shown. Already at t=1010, the old 
highest peak on the right suffers a 
radical erosion, on the presence of 
ants (they start to explore new 
regions).  

Fig. 4. maxF0a => minF0a. 
Maximizing function F0a during 250 
time steps and then minimizing it for t 
≥ 251. Pheromone distribution 
(Social Cognitive Maps) for t = 50, 
150, 250, 300, 350, 400, 450 and 
500 time steps, of 2000 ants 
exploring function F0a on a 100 x 
100 toroidal grid are shown. Already 
at t=300, the highest peak on the right 
suffers a radical erosion, on the 
presence of ants starting to explore 
new regions. As time passes the 
majority of the colony moves to the 
deep valley, on the left. Parameters 
are different from those used in Figs. 
2-3 (check table III). 

t =2 0 t = 20 t = 400 t = 400 

t = 100 t = 100 t = 500 t = 500 

t = 300 t = 300 t = 600 t = 600 

t = 320 t = 320 

Fig. 5. minF6 => maxF0a. 
Minimizing function F6 during 300 
time steps and then maximizing 
function F0a for t ≥ 301. Pheromone 
distribution (Social Cognitive Maps) 
for t = 20, 100, 300, 320, 400, 500, 
and 600 time steps, of 3000 ants 
exploring function F6 and F0a on a 
100 x 100 toroidal grid are shown. 
Parameters are different from those 
used in Figs. 2-3 (check table III). 

 
This equation measures the relative probabilities of moving to 
a cite r (in our context, to a cell in the grid habitat) with 
pheromone density σ(r). The parameter β is associated with 
the osmotropotaxic sensitivity, recognised by Wilson [32] as 
one of two fundamental different types of ant’s sense-data 
processing. Osmotropotaxis, is related to a kind of 
instantaneous pheromonal gradient following, while the 
other, klinotaxis, to a sequential method (though only the 
former will be considered in the present work as in [7]). Also 
it can be seen as a physiological inverse-noise parameter or 
gain. In practical terms, this parameter controls the degree of 
randomness with which each ant follows the gradient of 
pheromone. On the other hand, 1/  is the sensory capacity, 
which describes the fact that each ant’s ability to sense 
pheromone decreases somewhat at high concentrations. 
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In addition to the former equation, there is a weighting factor 
w(Δθ), where Δθ is the change in direction at each time step, 
i.e. measures the magnitude of the difference in orientation. 
As an additional condition, each individual leaves a constant 
amount η of pheromone at the cell in which it is located at 
every time step t. This pheromone decays at each time step at 
a rate k. Then, the normalised transition probabilities on the 
lattice to go from cell k to cell i are given by Pik  (Eq. 2, [7]), 
where the notation j/k indicates the sum over all the 
surrounding cells j which are in the local neighbourhood of k. 
Δi measures the magnitude of the difference in orientation for 
the previous direction at time t-1. That is, since we use a 
neighbourhood composed of the cell and its eight neighbours, 
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Δi can take the discrete values 0 through 4, and it is sufficient 
to assign a value wi for each of these changes of direction. 
Chialvo et al. used the weights of w0 =1 (same direction), w1 
=1/2, w2 =1/4, w3 =1/12 and w4 =1/20 (U-turn). In addition, 
coherent results were found for η=0.07 (pheromone 
deposition rate), k=0.015 (pheromone evaporation rate), 
β=3.5 (osmotropotaxic sensitivity) and γ =0.2 (inverse of 

sensorycapacity), where the emergence of well defined 
networks of trails were possible. Except when indicated, these 
values will remain in the following framework. As an 
additional condition, each individual leaves a constant 
amount η of pheromone at the cell in which it is located at 
every time step t. Simultaneously, the pheromone evaporates 
at rate k, i.e., the pheromonal field will contain information 
about past movements of the organisms, but not arbitrarily in 
the past, since the field forgets its distant history due to 
evaporation in a time τ ≅ 1/k. As in past works, toroidal 
boundary conditions are imposed on the lattice to remove, as 
far as possible any boundary effects (e.g. one ant going out of 
the grid at the south-west corner, will probably come in at the 
north-east corner). 

In order to achieve emergent and autocatalytic mass 
behaviours around specific extrema locations (e.g., peaks or 
valleys) on the habitat, instead of a constant pheromone 
deposition rate η used in [7], a term not constant is included. 
This upgrade can significantly change the expected ant 
colony cognitive map (pheromonal field). The strategy 
follows an idea implemented earlier by Ramos [25,26], while 
extending the Chialvo model into digital image habitats, 
aiming to achieve a collective perception of those images by 
the end product of swarm interactions. The main differences 
to the Chialvo work is that ants, now move on a 3D discrete 
grid, representing the functions which we aim to study (fig. 1) 
instead of a 2D habitat, and the pheromone update takes in 
account not only the local pheromone distribution as well as 
some characteristics of the cells around one ant. In here, this 
additional term should naturally be related with specific 
characteristics of cells around one ant, like their altitude (z 
value or function value at coordinates x,y), having in mind 
our present aim. So, our pheromone deposition rate T, for a 
specific ant, at one specific cell i (at time t), should change to 
a dynamic value (p is a constant = 1.93) expressed by 
equation 3. In this equation, max = | zmax – zmin |, being zmax 
the maximum altitude found by the colony so far on the 
function habitat, and zmin the lowest altitude. The other term 

[i] is equivalent to (if our aim is to minimize any given 
landscape): [i] = | zi – zmax |, being zi the current altitude of 
one ant at cell i. If on the contrary, our aim is to maximize 
any given landscape, then we should instead use [i] = | zi – 
zmin |. Finally, please notice that if our landscape is completely 
flat, results expected by this extended model will be equal to 
those found by Chialvo and Millonas in [7], since [i]/Δmax 
equals to zero. In this case, this is equivalent to say that only 
the swarm pheromonal field is affecting each ant choices, and 
not the environment - i.e. the expected network of trails 

depends largely on the initial random position of the colony, 
and in trail clusters formed in the initial configurations of 
pheromone. On the other hand, if this environmental term is 
added a stable and emergent configuration will appear which 
is largely independent on the initial conditions of the colony 
and becomes more and more dependent on the nature of the 
current studied landscape itself. As specified earlier, the 
environment plays an active role, in conjunction with 
continuous positive and negative feedbacks provided by the 
colony and their pheromone, in order to achieve a stable 
emergent pattern, memory and distributed learning by the 

community [29]. 

IV. EXPERIMENTAL SETUP AND RESULTS 

In order to test the dynamical behaviour of this new Swarm 
Search algorithm presented earlier in section 3 (pseudo-code 
in table I), we have used classical test functions (table II) 
drawn from the literature in Genetic Algorithms, 
Evolutionary strategies and global optimization [24], several 
of them graphically accessible in fig. 1. Function F0a 
represents one deep valley and one peak, while F0b his the 
opposite. Function F1 represents De Jong’s function 1 and 
his one of the simplest. It is continuous, convex and 

TABLE II 
CLASSICAL TEST FUNCTIONS USED IN OUR ANALYSIS FROM MATLAB [24] 

Function ID Equation 
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TABLE III 
PARAMETERS USED FOR DIFFERENT TEST SETS 

 
Fig. 

 
2 
3 
4 
5 

 
N ants 

 
3000 
3000 
2000 
3000 

 
tmax 

 
1000 
1150 
500 
600 

 
k  
 

0.015 
0.015 
1.000 
1.000 

 
η 
 

0.07 
0.07 
0.10 
0.01 

 
β 
 

3.5 
3.5 
3.5 
3.5 

 
 
  

0.2 
0.2 
0.2 
0.2 

 
p 
 

1.93 
1.93 
1.90 
1.90 
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unimodal; xi is in the interval [-5.12; 5.12] and the global 
minimum is at xi=0. Function F2 represents an axis parallel 
hyper-ellipsoid similar to De Jong’s function 1. It is also 
know as the weighted sphere model. Again it is continuous, 
convex and unimodal in the interval xi  [-5.12; 5.12], with 
global minimum at xi=0. Function F3 represents an extension 
of the axis parallel hyper-ellipsoid (F2), also know as 
Schwefel’s function 1.2. With respect to the coordinate axes 
this function produces rotated hyper-ellipsoids; xi is in the 
interval [-65.536; 65.536] and the global minimum is at xi=0. 
Likewise F2, it is continuous, convex and unimodal. Function 
F4 represents the well-know Rosenbrock’s valley or De 
Jong’s function 2. Rosenbrock’s valley is a classic 
optimization problem. The global optimum is inside a long, 
narrow, parabolic shaped flat valley. To find the valley is 
trivial, however convergence to the global optimum is 
difficult and hence this problem has been repeatedly used in 
assess the performance of optimization algorithms; xi is in the 
interval [-2.048; 2.048] and the global minimum is at xi=0. 
Function F5 represents the Rastrigin’s function 6. This 
function is based on De Jong’s function 1 with the addition of 
cosine modulation to produce many local minima. Thus, the 
test function is highly multimodal. However, the location of 
the minima are regularly distributed. As in F1, xi is in the 
interval [-5.12; 5.12] and the global minimum is at xi=0. 
Finally, F6 represents Schwefel’s function 7, being deceptive 
in that the global minimum is geometrically distant, over the 
parameter space, from the next best local minima. Therefore, 
the search algorithms are potentially prone to convergence in 
the wrong direction; xi is in the interval [-500; 500] and the 
global minimum is at xi=420,9687 while f(x)=n.418,9829. In 
our tests, n=2. Within this specific framework we have 
produced several run tests using different test functions, some 
of which are presented here trough figures 2 to 5. The 
parameters used are shown on table 3. The simplest test was 
the first one (fig.2) where we forced the colony to search for 
the maximal peak in function F0a, during 1000 time steps. 
The other tests were harder, that is dynamic, since they 
include not only different purposes simultaneously 
(maximizing and minimizing), tracking different extrema, as 
well as different landscapes that changed dynamically on 
intermediate swarm search stages (e.g., fig. 3, 4 and 5). 

V. SWARM SEARCH VERSUS BACTERIAL FORAGING 

ALGORITHMS 

In order to further analyze the collective behavior of the 
present proposal, we performed a comparison between the 
ant-like Swarm Search Algorithm (SSA) and the Bacterial 
Foraging Optimization Algorithm (BFOA), on the dominion 
of function optimization. BFOA was selected since it 
represents an earlier proposal for function optimization as 
well based on natural foraging capacities. Presented by 
Passino at IEEE Control Systems Magazine in 2002 [22] and 
later that year in the Journal of Optimization Theory and 

Applications [17], the author for the purpose of a simple but 
powerful illustrative example, used his algorithm to find the 
minimum of two complex functions Jcc, described in [22], 
page 60. Further material, as the MATLAB code of his 
algorithm and the tri-dimensional functions experimented, 
can also be found on the web address of a recent book from 
the same author (Biomimicry for Optimization, Control and 
Automation, Springer-Verlag, London, UK, 2005), at 
http://www.ece.osu.edu/ ~passino/ICbook/ ic_index.html. 
Passino uses S=50 bacteria-based agents, during four genera-
tions. In each generation, and has a requirement of his 
algorithm, each agent enters a chemotaxis loop (see page 61 
[22]), performing Nc=100 chemotactic (foraging) steps.  
 

Passino F1 3D Passino F1 2D Passino F2 3D Passino F2 2D 

t = 100 t = 200 t = 300 t = 400 

 
t = 100 t = 200 t = 300 t = 400 

t = 100 t = 200 t = 300 t = 400 

t = 100 t = 200 t = 300 t = 400 

t = 100 t = 200 t = 300 t = 400 
Fig. 6. In the first row the test functions used by Passino [22,17]. In the second 
and third rows, BFOA minimizing results respectively for F1 and F2. The 
graphics show the bacterial motion trajectories (using 50 bacteria-like agents). 
In the fourth and fifth rows, SWARM-SEARCH algorithm (SSA) minimizing 
results respectively for F1 and F2, and for the same foraging time period. The 
graphics shows the pheromone distribution. In the last row, SSA is requested to 
deal with two contradictory goals, i.e. to minimize F1 and then to maximize it. 
In all these tests, SSA has used 50 ant-like agents. Check main text for the 
parameters used. Habitat size equals 2 x [0,30]. 

 
Thus the algorithm – for the precise application – runs for 
t=400 time steps, which make us believe that a fair 
comparison can be make in regard of the parameter values we 
use. The two functions represent what Passino designates by 
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nutrient concentration landscapes (see fig. 6, first row – the 
web address also contains his MATLAB code used in the two 
functions, where Nutrientsfunc.m and Nutrientsfunc1.m are 
represented by different weights). His function F2 
(Nutrientsfunc1.m)  has a zero value at [15,15] and decreases 
to successively more negative values as you move away from 
that point, reaching a plateau with the same value. Moreover, 
and for the purpose of discrete function optimization, Passino 
[22,17] represented both functions by a discrete lattice (as 
well as us in our past tests) with a size of 30 x 30 cells over 
the optimization domain (each cell has a correspondent z or 
Jcc value). For these reasons and in order to keep a coherent 
comparison, we shall use 50 ant-like agents in our SSA, on a 
30 x 30 tri-dimensional habitat, for t=400 time steps, on both 
functions. We then run 3 tests. The first is requested to 
minimize Passino’s function F1. The second test is requested 
to minimize Passino’s function F2. Finally, and in order to 
prove the highly adaptive features of our model, we requested 
SSA to deal with two contradictory goals, i.e. to minimize F1 
and then to maximize it, over the same period of 400 time 
steps. As visible, SSA quickly adapts to the different 
purposes. Over function F1, the pheromone concentration is 
already intensely allocated at the right point at t=100 (and not 
in other areas), while BFOA, at this moment, still explores 
different regions on the optimization domain. Over function 
F2, the swarm quickly separates in different foraging groups, 
since there are a large number of points with the same 
minimal value. Finally over function F1 again, in the final 
test (last row – fig. 6), SSA is able to process two different 
demands (minimization followed by maximization) over the 
same foraging time period that BFOA uses for F1 
minimization. The parameters used in our experiments 
follows: Nants=50, tmax=400, k =1 (pheromone evaporation 
rate), η=0.1 (pheromone deposition rate), β=7 (this 
parameter controls how ants follow the pheromone gradient), 
=0.2, and p=1.9. Exception made for test 1, where β=6. 

 

VI. CONCLUSIONS 

   Evolution of mass behaviours on time are difficult to 
predict, since the global behaviour is the result of many part 
relations operating in their own local neighbourhood. The 
emergence of network trails in ant colonies, for instance, are 
the product of several simple and local interactions that can 
evolve to complex patterns, which in some sense translate a 
meta-behaviour of that swarm [29]. Moreover, the translation 
of one kind of low-level (present in a large number) to one 
meta-level is minimal. Although that behaviour is specified 
(and somehow constrained), there is minimal specification of 
the mechanism required to generate that behaviour; global 
behaviour evolves from the many relations of multiple simple 
behaviours, without global coordination (i.e. from local 
interactions to global complexity. There is some evidence that 
our brain as well as many other complex systems, operates in 
the same way, and as a consequence collective perception 
capabilities could be derived from emergent properties, which 
cannot be neglected in any pattern search algorithm. These 

systems show in general, interesting and desirable features as 
flexibility (e.g. the brain is able to cope with incorrect, 
ambiguous or distorted information, or even to deal with 
unforeseen or new situations without showing abrupt 
performance breakdown) or versability, robustness  (keep 
functioning  even when  some parts are locally  damaged),  
and they operate in a massively parallel fashion. Present 
results point to that type of interesting features. Although the 
current model is far from being consistent with real ones, 
since only some type of real mechanisms were considered, 
swarm pheromonal fields reflect some convergence towards 
the identification of a common goal in a purely decentralized 
form. Moreover, the present model shows important adaptive 
capabilities, as in the presence of sudden changes in the 
habitat - our test landscapes (fig. 1). Even if the model is able 
to quickly adapt to one specific environment, evolving from 
one empty pheromonal field, habitat transitions point that, 
the whole system is able to have some memory from past 
environments (i.e. convergence is more difficult after 
learning and perceiving one past habitat). On the other hand 
this feature can have some advantage, for instance in the case 
where the original or similar environments are back in place. 
This emerged feature of résistance, is somewhat present in 
many of the natural phenomena that we find today in our 
society. In a certain sense, the distribution of pheromone 
represents the collective solutions found so far (memory, risk 
avoidance, exploitation behavior), while evaporation enables 
the system to adapt (tricks a decision, explorative behavior), 
not only as in normal situations (a complex but static search 
environment), as well as when the landscape suddenly 
changes, moving the colony’s new target to a new unexplored 
region and keep tracking of it. One crucial aspect observed 
here, as noted in the past by Langton [16] and present in 
many complex systems, only at the right intermediary regime, 
in here between contradictory behaviors of exploration and 
exploitation, the swarm is able to quickly converge.  
    The recognizable results indicate that the collective 
intelligence is able to cope and quickly adapt to unforeseen 
situations even when over the same cooperative foraging 
period, the community is requested to deal with two different 
and contradictory purposes. All these above mentioned 
aspects show how vital can be the study of social foraging for 
the development of new distributed search algorithms, and 
the construction of social cognitive maps, with interesting 
properties in collective memory, collective decision-making 
and swarm-based pattern detection and recognition.  
But the work could have important consequences in other 
areas. Perhaps, one of the most valuable relations to explore 
is that of social foraging and evolution. For two reasons; 
First, as described by Passino [22], natural selection tends to 
eliminate animals with poor “foraging strategies” (methods 
for locating, handling, and ingesting food) and favor the 
propagation of genes of those animals that have successful 
foraging strategies since they are more likely to enjoy 
reproductive success (they obtain enough food to enable them 
to reproduce). Logically, such evolutionary principles have 
led scientists in the field of foraging theory to hypothesize 
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that it is appropriate to model the activity of foraging as an 
optimization process: A foraging animal takes actions to 
maximize the energy obtained per unit time spent foraging, in 
the face of constraints presented by its own physiology and by 
the environment.  
    Second, because there is an increasing recognition that 
natural selection and self-organization work hand in hand to 
form evolution, as defended by Kauffmann [13]. For example, 
anthropologist Jeffrey McKee [19,14] has described the 
evolution of human brain as a self-organizing process. He 
uses the term autocatalysis to describe how the design of an 
organism’s features at one point in time affects or even 
determines the kinds of designs it can change into later. For 
example the angle of the skull on the top of the spine left 
some extra space for the brain to expand. Thus the evolution 
of the organism is determined not only by selection pressures 
but by constraints and opportunities offered by the structures 
that have evolved so far. Also, and back again in what 
regards the evolution of collectives, it is known that during 
the evolution of life, there have been several transitions in 
which individuals began to cooperate, forming higher levels 
of organization and sometimes losing their independent 
reproductive identity (insect societies are one example). 
Several factors that confer evolutionary advantages on higher 
levels of organization have been proposed, such as Division of 
Labor and Increased Size. But recently, a new third factor 
was added: Information Sharing [15]. Lachmann et al., 
illustrate with a simple model how information sharing can 
result in individuals that both receive more information about 
their environment and pay less for it. Being social foraging 
essentially a self-organized phenomenon, the study of 
computational foraging embedded with GA (Genetic 
Algorithm) like natural selection can much probably enhance 
our understanding on the detailed forms of the hypothetical 
equation: Evolution = Natural Selection + Self-Organization, 
and in the precise role of each “variable”. As an example, 
current work in the same area [10], include the research of 
variable population size swarms, as used similarly in 
Evolutionary Computation [9], where each individual can 
have a probability of making a child, as well to die, 
depending on his accumulated versus spent energetic 
resources. The system as a whole, then proceeds on the search 
space as a kind of distributed evolutionary swarm. Finally and 
in parallel, an effort is being made in order to understand the 
societal memory and his speed on tracking extrema over 
dynamic environments using self-regulatory swarms based on 
the present model [30,10,29]. 
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